
GPU programming 101

Cedric Nugteren

Amsterdam C++ meetup
2016 - 08 - 25

Agenda

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example: matrix-multiplication

4. C++11 ❤ GPU → SyCL

Why believe me?

Cartesius supercomputer Embedded systems (mobile)

Agenda

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example: matrix-multiplication

4. C++11 ❤ GPU → SyCL

Quiz: what is this?

Easier?

But where is the ALU?

Haswell-E core

Total chip: 
5,5 billion transistors

Simple 32-bit integer multiplier:
21 thousand transistors

But where is the ALU?

Haswell-E core

Branch prediction logic

Out-of-order execution logic

ALU (scalar + SIMD vector)
Register file L1 I$, IF, ID

L1 + L2 data cache
Lot’s of ‘useless logic’

Consequence: 
only 8 multiplications
per clock-tick per core

Why is the ‘useless logic’ needed?

Huge impact of branches & data dependencies, low ILP

Haswell: 19 pipeline stages

Now let’s build a GPU

Wide SIMD vector ALU

SIM
D SIM

D SIM
D SIM

D SIM
D

Step 1: Vector ALU only

Register file L1 I$, IF, ID

Now let’s build a GPU

Wide SIMD vector ALU

SIM
D SIM

D SIM
D SIM

D SIM
D

Step 2: Multiple active threads

L1 I$, IF, ID

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4
Branch prediction logic

Out-of-order execution logic

Register fileLarge
register file

Now let’s build a GPU

Many 
wide SIMD vector ALUs

Step 3: More more more!

Huge
register file

L1 I$, IF, ID

Now let’s build a GPU

Many 
wide SIMD vector ALUs

Step 4: High-bandwidth off-chip memory

L1 I$, IF, ID

SRAM High-bandwidth,
high-latency

DRAM

Huge
register fileHumongous
register file

Now let’s build a GPU
Step 5: Duplicate this ‘core’ / ‘SM’

L2 cache

Many 
wide SIMD vector ALUs

Humongous
register file

L1 I$, IF, ID

SRAM

GPU vs CPU

Haswell-E Maxwell

GPU
30 pJ/flop (SP)

Optimised for throughput
High bandwidth DRAM

Explicit management of SRAM
Many active threads

CPU
130 pJ/flop (SIMD SP)

Optimised for latency
Low latency DRAM

Deep cache hierarchy
Few active threads

Agenda

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example: matrix-multiplication

4. C++11 ❤ GPU → SyCL

So, let’s program this GPU!

But, how?

1. No access to the file system

2. No I/O, no printf() or std::cout

3. No operating system

4. Separate memory

GPU DRAM

GPU

commands
&

data-transfer

The CPU as a control processor

GPU DRAM

GPU CPU

CPU DRAM

‘host’‘device’

Vector add is the new ‘hello world’

Candidate for parallelisation

The kernel
‘Function’ to be executed by each thread

Replacement of the for-loop index

512
0 .. 511

0 .. (N/512 - 1)

For incomplete blocks

Threads and thread-blocks

thread 0

thread 1

thread 2

thread 511

…

512 threads
==

1 thread-block
block 0

block 1

block 2

block (N/512) - 1

…

grid with
N threads

thread-blocks and grids can also be 2D or 3D

Note:

Weaving threads

Weaving threads (aka scheduling)

Multiple blocks per SM, but:
1. Maximum 2048 threads
2. Maximum 32 blocks
3. Maximum 64K registers
4. Maximum 64KB shared memory

Why do we care?
1. Share SRAM ‘shared memory’
2. Synchronisation barriers
Otherwise: no synchronisation!

block 0

block 1

block 2

block (N/512) - 1

…

Scheduling unit: thread-block

lower level scheduling: threads execute in ‘warps’ of 32 on SIMD units
Note:

‘occupancy’

The boilerplate code
CPU function

Pointers to 
GPU DRAM

N threads

CUDA versus OpenCL

CUDA versus OpenCL

The good:

Kernels are almost the same

The bad:
OpenCL host code is much  

more verbose

The ugly:
Performance portability is 

far from trivial

What about (modern) C++?

Range-based for-loops

Lambda’s

Templates

Auto type 
deduction

Device functions

What about (modern) C++ in kernels?

(subset of)
C

(subset of) 
C++

(subset of) 
C++11/14

CUDA < 7.0 ✔ ✔ X

CUDA ≥ 7.0 ✔ ✔ ✔

OpenCL < 2.1 ✔ X X

OpenCL ≥ 2.1 ✔ ✔ ✔

No implementation yet

Agenda

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example: matrix-multiplication

4. C++11 ❤ GPU → SyCL

Matrix-multiplication: C = A * B
www.cedricnugteren.nl/tutorial.php

m = 2

n = 7

• Single-precision floating-point
• Layout: column-major ordering

Assumptions:

http://www.cedricnugteren.nl/tutorial.php

OpenCL SGEMM tuning

Optimisation steps:

1. Naive implementation

2. Tiling in the shared memory

3. More work per thread

4. Wider data-types (vectors)

5. Transposed input matrix and rectangular tiles

6. 2D register blocking

Tesla K40m (Kepler), ECC on
CUDA 6.5

www.cedricnugteren.nl/tutorial.php

in short

CUDA version is
very similar

http://www.cedricnugteren.nl/tutorial.php

Step 1: Naive implementation
www.cedricnugteren.nl/tutorial.php

2D thread
indexing

http://www.cedricnugteren.nl/tutorial.php

Step 1: Naive implementation
www.cedricnugteren.nl/tutorial.php

1024 threads
per block

NVIDIA
AMD
AMD

A’dam C++ meetup

http://www.cedricnugteren.nl/tutorial.php

Step 2: Tiling in the shared memory
www.cedricnugteren.nl/tutorial.php

Lots of data re-use 
in A and B!

http://www.cedricnugteren.nl/tutorial.php

Step 2: Tiling in the shared memory
www.cedricnugteren.nl/tutorial.php

32 by 32

Shared memory required:
2 * 32 * 32 * 4B = 8KB

Shared memory available:
48K

Active blocks per core/SM:
48/8 = 6

http://www.cedricnugteren.nl/tutorial.php

Step 2: Tiling in the shared memory
www.cedricnugteren.nl/tutorial.php

Shared within a
thread-block

2 in example

http://www.cedricnugteren.nl/tutorial.php

Step 2: Tiling in the local memory
www.cedricnugteren.nl/tutorial.php

Advantages:

1. Reduction of 32x in off-chip memory accesses

2. Coalesced memory accesses now also for B

Factor 3 in picture:
- Before 2x6 loads
- Now 2x2 loads

NVIDIA
AMD
AMD

A’dam C++ meetup

http://www.cedricnugteren.nl/tutorial.php

Step 3: More work per thread
www.cedricnugteren.nl/tutorial.php

Unroll this loop

Two loop iterations:Main body of our kernel:

1. Load Asub[k][row] into a register
2. Load Bsub[col][k] into a register
3. Perform fused multiply-add (FMA)
4. Load Asub[k+1][row] into a register
5. Load Bsub[col][k+1] into a register
6. Perform fused multiply-add (FMA)

Not going to get peak GFLOPS :-(

http://www.cedricnugteren.nl/tutorial.php

Step 3: More work per thread
www.cedricnugteren.nl/tutorial.php

Similar idea as before, but now to save on-chip memory accesses

Tile: 32 by 32 
Work-per-thread: 4

http://www.cedricnugteren.nl/tutorial.php

Step 3: More work per thread
www.cedricnugteren.nl/tutorial.php

http://www.cedricnugteren.nl/tutorial.php

Step 3: More work per thread
www.cedricnugteren.nl/tutorial.php

Previous version (4 iterations): New version (4 iterations)

7.
8.
9.
10.
11.
12.

8 loads for 4 FMA

(4+1) loads for 4 FMA

NVIDIA
AMD
AMD

A’dam C++ meetup

http://www.cedricnugteren.nl/tutorial.php

Step 4: Wider data-types
www.cedricnugteren.nl/tutorial.php

Vector operations and loads/stores:

1. Not so useful for:
1. NVIDIA GPUs
2. Modern AMD GPUs

2. Important for:
1. Older AMD GPUs (VLIW)
2. Intel Xeon Phi
3. CPUs (NEON / SSE / AVX)

http://www.cedricnugteren.nl/tutorial.php

Step 5: Pre-transpose input matrix
www.cedricnugteren.nl/tutorial.php

pre-transpose matrix B

more tuning 
opportunities

rectangular tiles
are now allowed

http://www.cedricnugteren.nl/tutorial.php

Step 6: 2D register blocking
www.cedricnugteren.nl/tutorial.php

8 loads for 4 FMA (4+1) loads for 4 FMA

(4+4) loads for 4*4 FMA

http://www.cedricnugteren.nl/tutorial.php

Agenda

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example: matrix-multiplication

4. C++11 ❤ GPU → SyCL

CUDA and OpenCL are not ideal

Drawbacks of CUDA

1. Vendor specific

2. Requires special compiler

3. Some boilerplate code

4. Difficult to debug

5. …

Drawbacks of OpenCL

1. Kernel source as string

2. C-API, not C++

3. Lots of boilerplate code

4. Even more difficult to debug

5. …

Some alternatives to CUDA/OpenCL

C++ host
API

Custom
kernels

Inter-op with
OpenCL Method

Bolt/Thrust ✔ X X Parallel STL library

Boost.Compute ✔ ✔ ✔
Parallel STL +

custom kernels
OpenMP 4 /
OpenACC ✔ ✔ X Pragma directives

C++AMP ✔ ✔ X Kernel as lambda

SyCL ✔ ✔ ✔ Kernel as lambda

A game of thrones

OpenCL SyCL

OpenCL SPIR

Khal’s sickle

Khaleesi’s spear

Vector addition in

Device code

As before

Thread index

single
source!

valid 
C++

shorter
than

CUDA!

Allocates and copies  
buffers (when needed)

The compute language

Runs on all existing OpenCL hardware … as long as there is a compiler

The compute language

CPU compiler
(e.g. gcc/clang/msvc)

device compiler

last part of
OpenCL
compiler

CPU object file

Final executableSPIR
intermediate

representation

CPU
fallback

path

1. Intro GPU architecture

2. Intro GPU programming model

3. CUDA/OpenCL by example

4. C++11 ❤ GPU → SyCL

GPU programming 101

Cedric Nugteren

Amsterdam C++ meetup
2016 - 08 - 25

