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ABSTRACT
With GPU architectures becoming increasingly important
due to their large number of parallel processors, NVIDIA’s
CUDA environment is becoming widely used to support gen-
eral purpose applications. To efficiently use the parallel pro-
cessing power, programmers need to efficiently parallelize
and map their algorithms. The difficulty of this task leads
to the idea to investigate CUDA’s compiler.

Part of the compiler in the CUDA tool-chain is entirely un-
documented, as is its output. To draw conclusions on the
behaviour of this compiler, the resulting object code is re-
verse engineered. A visualization tool is introduced, analyz-
ing the previously unknown compiler behaviour and proving
helpful to improve the mapping process for the programmer.
These improvements focus on the area of register allocation
and instruction reordering. This paper describes an exten-
sion to the CUDA tool-chain, providing programmers with a
visualization of register life ranges. Also, the paper presents
guidelines describing how to apply optimizations in order to
obtain a lower register pressure.

In a case-study example, performance increases by 33% com-
pared to already optimized CUDA code. This is achieved by
optimizing the code with the help of the introduced visual-
ization tool. Also, in 11 other case-study examples, register
pressure is reduced by an average of 18%. The presented
guidelines could be added to the compiler to enable a simi-
lar register pressure reduction to be achieved automatically
at compile-time for new and existing CUDA programs.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization
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Compiler, CUDA, GPU, Mapping, SIMD

1. INTRODUCTION
Graphical processing units are a hot topic in computer archi-
tecture design. Today’s graphical processing units (GPUs)
provide a higher raw computation potential than traditional
general purpose CPUs, therefore, using GPUs for general
purpose tasks becomes increasingly common [4]. In the
past, GPUs have been used mainly for the acceleration of
3D-games. Now, however, GPUs come with increasing pro-
grammability and are used to provide hardware acceleration
for high definition video decoding [1] and for physics calcu-
lations within 3D-games [8]. Adding to the popularity of
GPUs for general purpose tasks is the in 2008 introduced
hardware acceleration support for Adobe Photoshop [15] and
Mathworks’ Matlab [7], offloading computation tasks from
the CPU.

GPUs are a typical example of the current shift within pro-
cessor design. Traditional processor design was driven by
frequency scaling, while nowadays, a trend towards hard-
ware multithreading and computationally dense SIMD1 ar-
chitectures can be observed [10]. In other words, the shift
replaces one complex high frequency processor by many sim-
ple parallel processors. The GPU is an example of an archi-
tecture consisting of multiple SIMD processors supporting
hardware multithreading. High-end GPUs typically outper-
form traditional CPUs by a factor of 50 when measuring in
raw computation power (FLOPS) [18].

Along with the trend towards parallel processors comes a
shift within the programming model. Sequential program-
ming languages are replaced by parallel programming lan-
guages that expose SIMD-style parallelism to the program-
mer. For GPUs, NVIDIA introduced CUDA2 as a parallel
programming environment for general purpose applications.
With CUDA, the programmer can exploit the GPU’s par-
allelism and accelerate general purpose applications. Al-
though similar GPU programming environments and lan-
guages exist (such as AMD’s Stream technology [2] and the
Khronos group’s open standard OpenCL [11]), the focus of
this paper lies on CUDA.

1.1 Problem statement
Although CUDA is specifically designed for general pur-
pose GPU programming, the mapping process of an algo-
rithm onto a GPU remains non-trivial. Even though gen-

1Single Instruction, Multiple Data
2CUDA is an acronym for Compute Unified Device Archi-
tecture



eral purpose GPU programming has developed fast in the
last three years, there is only a tiny fraction of program-
mers able to reach a near-optimal hardware usage for their
algorithms. In order to achieve this, the programmer is re-
quired to have thorough knowledge of the algorithm, the pro-
gramming language and the target hardware architecture.
Achieving optimal hardware usage is non-trivial with dis-
tributed memories, caches and register files all mappable by
the programmer. Additionally, the programmer is exposed
to parallel computing problems such as data-dependencies,
race-conditions, synchronization barriers and atomic oper-
ations. For example, programmers will have to ensure a
low register pressure. A low register pressure can lead to a
larger number of active threads, which can be paramount
for the application’s performance, as explained in this pa-
per. An example is illustrated in table 1, in which a different
instruction order yields a reduction of the register usage.

Table 1: Reducing register usage

Original r1 r2 Optimized r1 r2

load $r1 load $r1
load $r2 use $r1
use $r1 load $r2
use $r2 use $r2

Although it is clear that GPUs provide a strong platform
for algorithm mapping, the development tools have not yet
reached the level of maturity that programmers are accus-
tomed to when programming CPUs. To maintain high qual-
ity solutions, register pressure has to be kept as low as possi-
ble. In order to do so, clear guidelines on register reduction
techniques need to be presented, along with a visualization
of the compiled binary’s register life ranges. Only then will
programmers have insight in the behaviour of their compiler
and an opportunity to use their hardware efficiently in terms
of register usage.

1.2 Related work
An existing adjustment to the CUDA compilation flow is
the addition of a source-to-source compiler to increase hard-
ware utilization. In the work of S. Baghsorkhi et. al. such a
compiler, named CUDA-lite [3], is presented. With CUDA-
lite, performance can be increased by a factor up to 17,
depending on the level of optimization already applied and
the algorithm. However, this source-to-source compiler re-
quires annotations in the source code, giving pointers to
CUDA-lite for potential optimization steps. For an auto-
mated optimizer requiring no knowledge nor effort from the
programmer, annotations as necessary by CUDA-lite should
be omitted.

Other automatic optimization and mapping efforts are per-
formed as part of the design of a simulator or a translator.
An example of this is Ocelot [6], a translator from a GPU to
a Cell architecture using the GPU’s virtual instruction set.
In the work performed by G. Diamos et. al., several GPU
concepts are mapped onto a Cell architecture automatically.
Since the target architecture is a Cell processor, no specific
GPU optimizations are performed, although some optimiza-
tions and mapping techniques are valid for both architec-
tures.

1.3 Paper outline
The rest of this paper is organized as follows. First of all,
section 2 provides background information on the CUDA
environment and the GPU hardware. It first introduces the
basic concepts, followed by an overview of the CUDA com-
pilation flow. After the hardware is introduced, the coupling
between the CUDA environment and the GPU hardware is
evaluated, in order to obtain insight in the mapping process
of an algorithm onto a GPU.

Through the case-study of a block matching algorithm [5] in
section 3, the CUDA programming experience is evaluated.
It quickly becomes clear that the current tool-chain needs
to be extended with a decoding and visualization tool, pre-
sented in section 4. With this tool, previously hidden details
of the compiled program are revealed, enabling for new opti-
mizations and leading to an increased efficiency in hardware
usage. This is presented in section 5, along with examples
showing performance improvements of 33% over optimized
code and more than 400% over a naive implementation.

Finally, in section 6, conclusions on the research are pre-
sented.

2. BACKGROUND
Graphical processing units (GPUs) are becoming more and
more powerful, but also more suitable for general-purpose
applications. The graphical pipeline found in the GPU has
evolved to a homogeneous set of many programmable pro-
cessing elements. In contrary to a traditional processor, the
GPU has very simple processing elements, lacking complex
control. While a CPU dedicates most of its chip area to
control and cache, the GPU’s chip area is mostly ALUs.
This huge amount of computation power can be efficiently
used for highly data-parallel applications, such as picture en-
hancement, image analysis and other media applications. To
program GPUs for general purpose applications, the CUDA
environment is used. This environment consists of among
others a thread model and a compilation flow consisting of
several tools.

2.1 The CUDA thread model
The CUDA thread model is introduced to support paral-
lelism over different processing elements as well as to hide
memory latency by switching to a different thread. An
overview of the thread model is shown in figure 1 and de-
scribed below:

• A kernel is a small program which is typically exe-
cuted a large number of times on different data - also
known as SPMD (Single Program, Multiple Data) [10].
In CUDA, the kernel is executed on the GPU (named
device by NVIDIA), on which only one kernel can be
active at any given time3.

• A thread is an instance of a kernel. In CUDA, the
number of threads one kernel instantiates can be tens
to hundreds of thousands.

• Each thread belongs to a threadblock. Within one
threadblock, threads can synchronize with each other

3Future hardware, such as the Fermi architecture [14], does
support multiple concurrent kernels



using a barrier. Also within one threadblock, one piece
of shared memory can be used among all the threads it
consists of for data re-use or communication between
threads [10].

• Each threadblock belongs to a grid. Together, all
threadblocks in a grid form the complete execution of a
kernel. Within a grid, no communication or synchro-
nization is possible, except within individual thread-
blocks [10].
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Figure 1: The thread model: an example layout

Threads can be characterized as programs that fetch their
instructions from the same binary, but can take distinct con-
trol paths depending on thread-identifiers which are stored
in special registers [10]. These identifiers may hold different
values for each thread and correspond to both the coordi-
nates (1D, 2D or 3D) of a thread in their threadblock and
the coordinates of their threadblock in the grid.

2.2 G80’s hardware architecture
In this work, NVIDIA’s G80 architecture is taken as an ex-
ample. This GPU has a clustered SIMD layout, dividing its
processing elements in clusters of 8 over different multipro-
cessors4. With a total of at most 16 clusters and a clock
speed of more than 1GHz, its computational performance
can be in the order of hundreds of giga floating-point oper-
ations per second (GFLOPS). The G80 GPU uses a large
off-chip memory and a small high-speed memory shared be-
tween the processing elements within a cluster. Because no
read/write level 1 or level 2 cache is implemented in the
GPU’s design, accesses to the off-chip memory will have a
latency of several hundred clock cycles. To compensate for

4Strictly spoken, what NVIDIA refers to as a Streaming
Multiprocessor (SM), is not a multiprocessor as it contains
a single instruction cache. Nevertheless, the term multipro-
cessor is used to concur with NVIDIA and related work

the omitted caches, each multiprocessor has a large register
file to store numerous threads. With this large register file,
the GPU can switch to other threads instantly, perform-
ing useful computations while waiting for data to be read
from the off-chip memory. The G80 architecture does in-
clude a texture cache, only supporting memory reads from a
GPU perspective. Future NVIDIA GPUs (the Fermi archi-
tecture [14]) do add a traditional level 1 and 2 cache hierar-
chy, accelerating memory access operations even further.

2.3 Mapping threads onto multiprocessors
Now that the thread model and the hardware are discussed,
it is time to understand how they cooperate. In other words:
how are threadblocks and threads mapped onto the differ-
ent processing elements of the GPU? To answer this ques-
tion, the concept warp is introduced. A warp is defined by
NVIDIA as a group of at most 32 threads which start to-
gether at the same program address but are otherwise free
to branch and execute independently [18].

On execution of a kernel, a warp is started onto a multipro-
cessor. Because a warp typically contains 32 threads and a
multiprocessor contains 8 processing elements, it will take 4
clock cycles to execute the first instruction5 of each thread
within the warp [9]. Then, the first instruction of the second
warp is executed, taking another 4 clock cycles. When all
warps finish their first instruction, the first warp starts exe-
cuting the second instruction. This process continues until
an instruction is encountered that needs to wait for data
from a previously issued load instruction. At this point, the
multiprocessor does not schedule this warp anymore. When
a warp receives its data from the off-chip memory, it is en-
abled for scheduling again. In the case that all warps are
waiting for memory transfers, the multiprocessor is stalled.

Besides scheduling in groups of warps, the thread model
also introduces constraints on the scheduling possibilities.
As mentioned before, threadblocks can synchronize and use
a shared memory. Therefore, one entire threadblock must be
scheduled onto one multiprocessor. The number of thread-
blocks that fit onto one multiprocessor depends among oth-
ers on the register usage per thread and the shared memory
needed per threadblock.

From all the above mentioned concepts and models, it is
important to realize the impact of the number of threads
and threadblocks. First of all, the number of threads inside
a threadblock should at least be 32 for a warp to be com-
pletely filled and all processing elements to be used. Sec-
ondly, a threadblock has preferably a size dividable by 32,
so that no semi-filled warps have to be formed. Additionally,
for the pipeline latency (24 cycles in G80 architecture [10])
to be hidden, the number of warps should be at least equal
to the pipeline latency multiplied by the number of process-
ing elements per multiprocessor (8 in G80 architecture [10]).
But lastly - the most important - the total number of threads
needs to be chosen correctly to hide memory latency. Be-
cause the G80 hardware and the CUDA environment are
designed to switch to another warp whenever a warp has
to wait for memory access, memory request times can be

5The throughput is one warp per 4 cycles, the latency is
higher due to a multiple stage pipeline



completely or partially hidden - if enough warps are avail-
able to switch to. The memory operation intensity together
with the computation intensity can determine the number of
warps required to ensure completely hidden memory request
times, which can be analytically computed [9]. However, in-
creasing the number of threads - and thus warps - will either
show the same performance or help to hide this latency, in-
dependent of the structure of the program.

One way to increase the number of threads - and thus the
potential performance - is to optimize and reorganize the
kernel. By reducing the number of registers used, the regis-
ter pressure per thread decreases, allowing for more threads
to simultaneously fit onto the register file of one multipro-
cessor.

2.4 The CUDA compilation flow
To get more insight on the characteristics of threads, the
CUDA compilation flow is introduced, consisting of two pro-
prietary compilers, bundled together in nvcc [17]. First, be-
fore compilation, code is split up into a device part and a
host part by a front-end called cudafe. The device part -
the kernel - is ran through a modified Open64 [12], compil-
ing high level code into an intermediate instruction set - the
PTX6 format. The resulting PTX code is ran through the
second compiler, ptxas, which produces a GPU binary [17].
Since the host part is executed on the CPU, a standard C
compiler is used.

Host

gcc

CPU binary

C for CUDA
host file

Device

modified 
Open64

PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

Figure 2: A simplified compilation flow

Please note that the compilation flow described and seen in
figure 2 is an abstraction of the actual (more complicated)
compilation flow. For the research purposes of this work,
this abstraction provides sufficient information. Research is
focused on the trajectory from CUDA code through ptxas
and the modified Open64, resulting in a GPU binary.

The first compiler, based on Open64 (open-source), performs
the largest part of the compilation. It should be noted that

6PTX is an acronym for Parallel Thread eXecution

newer GPUs introduce slightly different hardware specifi-
cations and a slightly different instruction set. Therefore,
the intermediate PTX code that is produced is chosen to be
hardware independent, still being able to run on any CUDA
enabled GPU [17]. Because of the introduced hardware inde-
pendence, several compiler tasks are omitted. This includes
register assignment and instruction re-ordering. Thus, PTX
code can be seen as a virtual instruction set, targeting cur-
rent and future hardware architectures. PTX is completely
specified by NVIDIA [16].

The second compiler performs hardware specific compila-
tion. As of 2010, four different hardware specifications ex-
ist [16]. The compiler can compile a GPU binary for any
of these target specifications. In the case that a different
hardware architecture is used, the compiler ptxas can also
be executed at run-time as a just-in-time compiler. To be
able to do so, a compiled program by ptxas includes PTX
code in case of a change of the target hardware architec-
ture [10]. Ptxas needs to perform register allocation, because
PTX code assumes an infinite number of registers available,
while different hardware specifications vary the number of
available registers. In order to perform efficient register al-
location, ptxas can also perform instruction re-ordering.

3. MOTIVATION
To illustrate the current state of the ptxas compiler, a case-
study has been performed in which the block matching al-
gorithm7 is mapped onto the GPU. The algorithm consists
of the calculation of a sum of absolute difference (SAD) be-
tween two blocks of pixels. This is repeated numerous times
within a so-called search window, after which the smallest
SAD value is selected. This is then repeated multiple times
for different blocks of pixels, until a complete frame is pro-
cessed. More details can be found in [5] and [13].

A mapping of the block matching algorithm results in the
creation of different kernels. One kernel shows a pressure
of 17 register entries at the kernel’s bottleneck. During this
bottleneck, several register values are stored for later use.
To reduce the register usage, these values can be recalcu-
lated. In this case, introducing 4 additional instructions
reduces the kernel’s register usage by one, which can lead
to a significant performance increase due to an increased ac-
tive thread count. In the case-study example, the size of a
threadblock is set by the programmer to 256, resulting in
the data shown in table 2.

Table 2: Reducing the kernel’s register pressure

Number of Registers Registers
instructions per thread per block

Original 20 17 4352
Optimized 24 16 4096

In G80’s hardware architecture, the register file has a size
of 8192 entries. The original kernel’s register usage implies
the mapping of one threadblock on a multiprocessor (since
2 ·4352 > 8192), while the kernel with a reduced register us-
age enables two threadblocks per multiprocessor. As stated,

7The block matching algorithm is part of motion estimation,
which is used among others in MPEG decoding



the addition of more threadblocks - and thus threads - en-
ables for better memory latency hiding. If the original ker-
nel is memory latency bound, a best-case speed-up8 of 1.7
is achieved ( 20

24
· 2), due to the scheduling of 2 threadblocks

instead of 1.

The reader should note that although a small part of the
kernel is modified, the performance of the complete kernel
is altered due to the nature of the thread-based architecture.
Even so, performance increase can only be expected in the
modified kernel - not in any other kernels or in the host
code. As always, for the complete algorithm’s performance,
Amdahls law has to be kept in mind.

For an efficient mapping of any algorithm - including the
block matching algorithm - the programmer needs to have
knowledge of CUDA, the thread model, the GPU architec-
ture and the algorithm itself. Apart from knowledge, in
order to efficiently use the hardware, the programmer needs
valuable time. To automate the mapping and optimization
process, the CUDA compilation flow can be improved by
either adding tools or modifying the compilers.

Areas currently being 
researched

Original compilation flow

modified 
Open64

PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

adjusted
compiler

CUDA 
optimizer

PTX 
optimizer

Figure 3: Automating the mapping and optimiza-
tion process

Currently, a small number of CUDA source-to-source op-
timizers exist [3]. These optimizers are positioned at the
beginning of the CUDA compilation flow, as can be seen in
figure 3. Shown in the same figure are adjustments to the
Open64 compiler and PTX-to-PTX compilers, both areas
currently being researched. However, the last part of the
compilation flow - involving ptxas - is an area in which little
research has been done. Since the source of ptxas is unavail-

8This is only true under several assumptions, the simplified
formula estimates the actual value

able and the resulting GPU binary is unreadable, this part
of the CUDA compilation flow is still an unknown area. It
is however an important area to investigate, since register
pressure can determine the thread count and thus influence
the level of parallelism. Register allocation is performed in
ptxas and is thus not present at PTX level. CUDA pro-
vides the programmer with a setting for a maximum regis-
ter count, but this involves spilling register data onto the
off-chip memory.

4. VISUALIZING GPU BINARIES
To perform research in the area of ptxas, W.J. van der
Laan created a decoder for GPU binaries in 2007, named
decuda [19], decoding binaries to an assembly language close
to PTX. However, his decoder, designed through reverse en-
gineering, has several drawbacks:

• Since the designer of decuda started from an empty set
of known instructions, the source code of the tool is un-
organized. For every known rule, an additional if-then-
else statement is introduced, expanding the source code
while gathering more information and ending up with
complex source-code.

• Since decuda is solely based on reverse engineering, it
cannot be proven that the decoding algorithm is cor-
rect. Since it is based on a finite set of test cases, it
cannot be guaranteed that decuda decodes correctly in
all test cases.

• With the use of decuda, information can only be ex-
tracted with understanding of the PTX virtual instruc-
tion set. Then, in order to draw any conclusions, the
obtained decoded instructions need to be analyzed and
compared with the PTX or CUDA source code.

In order to overcome the mentioned drawbacks of decuda, a
new decoder is introduced, named CUDAvis9. CUDAvis is
used to both decode and visualize GPU binaries.

4.1 Design of CUDAvis
Using the scripting language Ruby10 and the graphical li-
brary Tcl/Tk11, a cross platform tool is created. The de-
sign of the tool can be divided into two stages - the decoding
stage and the visualization stage. Both stages are depicted
in figure 4. Among others, branches and labels are visu-
alized, followed by a register life range checking algorithm.
This results in a full view of every register, indicating if it
is occupied, written, read or unused. Additionally, bottle-
necks in terms of register pressure are identified, pointing
the programmer to the critical part of the code.

CUDAvis is positioned within the CUDA compilation flow
as seen in figure 5. The usage of CUDAvis is twofold:

• Firstly, CUDAvis is used by programmers to evaluate
compiled code. Programmers can identify structures,
register life ranges and bottlenecks in the code, which

9CUDAvis is short for CUDA visualization tool
10See www.ruby-lang.org
11See www.tcl.tk
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Figure 4: The design of CUDAvis

may not be present or visible in high-level CUDA or
intermediate PTX code. Programmers can then alter
and recompile high-level code to remove bottlenecks
or to avoid unwanted steps taken by any of the two
compilers.

• Secondly, CUDAvis is used to evaluate the behaviour
of ptxas. A number of improvements to the ptxas com-
piler are proposed, resulting in automated optimiza-
tions within the CUDA environment.

Original compilation flow
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PTX code

C for CUDA
kernel file

ptxas

GPU binary

cudafe

Custom compilation flow

CUDAvis

feedback

readable
GPU binary

Figure 5: CUDA compilation flow extended with
CUDAvis

Since a GPU includes an instruction decoder, hardware ex-
ists that has the same functionality as CUDAvis’ decoding
stage. This hardware is designed using general rules and
look-up-tables instead of thousands of small rules. CUDAvis
is designed with the idea to mimic the hardware instruction

decoder, using look-up-tables and general rules. In the de-
sign of the tool, data is separated from control and saved
in pre-defined data classes. The result is readable, compact
and intuitive code, leaving room for adjustments and expan-
sions.

4.2 Usage of CUDAvis
In figure 5, a feedback-loop is drawn, which involves adjust-
ing program code manually. This is done according to the
following steps:

1. The original high-level code is compiled with an un-
modified compiler.

2. The resulting binary (.cubin) is taken as an input by
CUDAvis. The execution of CUDAvis decodes the bi-
nary and displays a visualization; an example is shown
in figure 6 and elaborated in section 4.3.

3. The programmer identifies high register pressure sec-
tions in the code and finds better register allocation
possibilities by examining the visualized code.

4. The original high-level code is adjusted to reduce reg-
ister pressure. Depending on the solutions needed,
several types of adjustments can be made to direct
the compiler to reduce register usage. This includes
the declaration of volatile or constant variables, the
explicit declaration of expressions which are part of
other statements and the rearrangement of lines of
code. These are examples of adjustments that typi-
cally do not influence register allocation, but do for
CUDA’s compilation flow.

4.3 CUDAvis’ visualization
In figure 6, a snapshot is shown of the visualization obtained
using CUDAvis. In this case, lines 38 up to 68 of the Black-
Scholes algorithm are shown, which is taken as a case-study
in section 5.2.

Figure 6: Snapshot of the decoded Black-Scholes
binary



The left hand side of figure 6 shows the register life ranges,
ranging from register 0 up to 15 from left to right. For each
instruction and each register, the status is indicated. Red
indicates a read, blue indicates a write and purple indicates
both a read and a write. If the register is occupied it is given
an orange colour, else it is left blank.

Then, on the right hand side of figure 6, the decoded in-
structions are shown, complete with register names, constant
memory accesses, constants and conditional statements. In
CUDAvis, each type of instruction operand is given a dis-
tinct colour.

5. RESULTS
To illustrate the use of CUDAvis, two case-study examples
are taken. First, the block matching algorithm is considered.
Secondly, the Black-Scholes algorithm is taken as an exam-
ple, which is part of the CUDA SDK. Other examples from
the SDK are included as well. Concluding this section, a
number of guidelines is presented to improve CUDA’s com-
pilation flow, in particular the compiler ptxas.

5.1 Block matching as a case-study example
Part of the block matching algorithm is taken as an example.
A total of 7 instructions are considered, reading from and
writing to the register file as seen in table 3. In this table,
the register life ranges are shown. The 7 instructions are
executed sequentially and show a peak register usage of 5.

Table 3: Original register life ranges

r1 r2 r3 r4 r5 r6 Registers Instruction

1 2 load to ($r1,$r2)
2 4 load to ($r3,$r4)
3 5 $r5 = $r2 * 64
4 5 $r6 = $r4 * 64
5 5 $r2 = $r1 + $r5
6 4 $r4 = $r3 + $r6
7 3 $r1 = $r2 + $r4

With some basic instruction reordering steps, the structure
can change as seen in table 4. It is now a trivial task to
alter the instructions to reduce the register pressure to 4
which enables the scheduling of more threads, resulting in
a better hardware utilization. With CUDAvis’ register life
range checker, programmers can identify such opportunities.

Table 4: Modified register life ranges

r1 r2 r3 r4 r5 r6 Registers Instruction

1 2 load to ($r1,$r2)
2 3 $r5 = $r2 * 64
3 3 $r2 = $r1 + $r5
4 3 load to ($r3,$r4)
5 4 $r6 = $r4 * 64
6 4 $r4 = $r3 + $r6
7 3 $r1 = $r2 + $r4

Reducing the number of registers per thread can greatly
improve performance, as explained in section 2.3. For the
block matching algorithm, a naive and a highly optimized

GPU implementation where created [13]. Even then, with
the use of CUDAvis, more optimizations can be applied,
reducing the register pressure and resulting in a speed-up of
33% over the optimized code, as shown in table 5.

Table 5: Case-study: the block matching algorithm

Architecture Optimization level Speed-up

CPU Naive 1x
GPU Naive 17x
GPU Optimized 56x
GPU Optimized using CUDAvis 75x

Optimizations applied before CUDAvis range from memory
coalescing to shared memory usage, while optimizations per-
formed after the use of CUDAvis only result in a reduced
register usage. This includes:

• The explicit declaration of variables, to point the
compiler to parts of an expression that can be calcu-
lated prior to the rest of the expression. This technique
can be applied in cases where an expression must be
calculated every iteration of a loop, while a part of it
can be pre-calculated outside the loop. Omitting or
using this technique can alter the register pressure in
specific parts of the code.

• Specifying a volatile variable forces the compiler to
recalculate the variable if it is used later on in the code.
This can alter the register pressure, but can introduce
additional instructions.

• The use of a const variable indicates a non-changing
variable, to be kept in the register file as long as needed.
Using or omitting constant variables can influence reg-
ister pressure.

• The rearrangement of the instruction order (while
preserving functionality) can influence the compiler’s
behaviour, possibly resulting in a different register map-
ping.

5.2 Black-Scholes as a case-study example
A second case-study example is taken from the CUDA SDK.
The Black-Scholes algorithm represents a mathematical de-
scription of financial markets. As the algorithm is provided,
it shows a register pressure of 16. Part of the kernel from
the CUDA SDK is given in listing 1.

Now, using CUDAvis, the kernel can be visualized. When
evaluating the lines in which the register bottleneck can be
found (lines 56 and 57 in figure 6), it appears that a number
of registers are kept alive (orange), but not used at all during
the actual computation. One of the values occupying such a
register can be traced back to high-level code as the variable
thread N.

To reduce register pressure for the Black-Scholes algorithm,
the type of the variable thread N can be changed from int
to volatile int. This will force the hardware to recalculate
thread N every iteration, resulting in a slightly increased
execution time. Since thread N can be calculated in one



Listing 1: Simplified Black-Scholes algorithm

void BlackScholesGPU ( f l o a t ∗ data , i n t optN )
{

i n t opt ;
i n t t i d ;
i n t thread N ;

t i d = blockDim . x∗ blockIdx . x+threadIdx . x ;
thread N = blockDim . x∗gridDim . x ;

f o r ( opt=t i d ; opt<optN ; opt+=thread N )
{

BlackScholesBodyGPU ( data ) ;
}
}

void BlackScholesBodyGPU ( f l o a t ∗data )
{

// Ca lcu la te something
}

instruction using only input values from the register, execu-
tion time will increase minimally. Register pressure will now
reduce from 16 to 15. A reduction of register pressure by
one does not lead to any performance increase. This can be
explained from the fact that the Black-Scholes algorithm has
a block-size of 480 threads. With 16 registers, this results
in a register pressure of 7680 registers per threadblock. The
hardware has 8192 registers available, resulting in an occu-
pation of one threadblock per multiprocessor (b 8192

16·480c = 1).
Changing the register pressure to 15 will not result in a
higher occupation (b 8192

15·480c = 1), thus not leading to an
increase in performance.

However, when the size of a threadblock is changed to 270,
a register pressure of 15 will result in a higher occupation
compared to a register pressure of 16. In this case, the re-
sulting performance increase is limited (2%), due to other
bottlenecks than just the thread-count. The results of regis-
ter pressure reduction for the Black-Scholes algorithm (both
with 480 and 270 threads per threadblock) can be found in
table 6.

5.3 Register pressure reduction in examples
Apart from the two case-study algorithms, CUDAvis was
used to reduce register pressure on a set of algorithms taken
from the CUDA SDK. Without any algorithm knowledge,
register pressure was reduced by 1 to 4 registers, as shown
in table 6.

Although table 5 shows a performance increase of 33% due
to the use of CUDAvis for the block-matching algorithm,
it may not be the case for other algorithms12. From table
6 it is clear that programmers are able to reduce register
pressure by directing the compiler in the right direction.
Even though performance may not increase, reducing the
register pressure might enable a significant (up to a factor

12It should be noted however, that the kernels given in the
CUDA SDK are already highly optimized for performance

Table 6: Register reduction for CUDA SDK exam-
ples

Register Register Perfor-
Algorithm pressure pressure mance

(original) (modified) gain

Black-Scholes 480 16 15 0%
Black-Scholes 270 16 15 +2%

BoxFilter rgba 16 14 0%
ConvFFT2D mod 11 10 -36%

Histogram 64 14 12 -225%
Denoising NLM 24 21 -6%
MarchingCubes 31 27 0%

MersenneTwister 16 12 -10%
QuasiRandom CND 10 7 -3%

ScalarProd 15 13 +3%
ScanNaive 8 7 -5%

ThreadFenceRed 11 10 0%

of 2) relaxation of memory latency constraints. This implies
that in that case a slower and cheaper memory - in terms of
cost and power - will not have a performance impact.

As seen in table 6, applying the register pressure reduction
techniques to the Histogram 64 algorithm shows a signifi-
cant performance loss. When comparing the original with
the resulting binary, the cause is found: the compiler com-
pletely restructered the code. For the other algorithm show-
ing a significant performance loss, ConvFFT2D mod, the
reason can be found in the relatively small kernel. Orig-
inally, the inner loop contained 13 instructions, but now,
after register pressure reduction, it contains 16 instructions.
The signficiant difference is a cause for the performance loss.

5.4 Guidelines to reduce register pressure
As stated, CUDAvis helps to evaluate the behaviour of ptxas.
Because the development of CUDA’s tool-chain lacked man-
power [12], an opportunity for possible improvements to
ptxas exists [13]. From section 2.3, it is clear that a higher
number of schedulable threads can lead to an increase of
performance. To increase the number of threads schedula-
ble on one multiprocessor, a reduction of the register usage
per thread could be required. The relation between the reg-
ister pressure and the active thread count is elaborated in
this section, along with three techniques to increase perfor-
mance.

Traditional architectures have fixed register boundaries. The
GPU however, has multiple virtual register boundaries. This
is due to the fact that threads within threadblocks are sched-
uled as a whole; a complete threadblock can either fit or
not fit onto the register file. Depending on the size of a
threadblock, multiple register boundaries are defined. The
number of threadblocks per multiprocessor can be calcu-
lated13 as seen in equation 1. The CUDA compiler assumes
a fixed number of registers available, whereas it should con-
sider these virtual register boundaries imposed by the thread
model.

13The number of threadblocks per multiprocessor could be
limited by other factors, such as shared memory usage



blocks = b total registers

registers per thread · threads per block
c (1)

From equation 1, it can be seen that if the denominator
approaches half the number of total registers, the register
file occupation will approach 50%. Reducing the register
or thread count slightly can result in a full or almost full
occupation of the register file, increasing the number of ac-
tive threads. Using equation 1, programmers can tune their
algorithms in the following ways:

• Rematerialization can lead to a lower register pres-
sure. This is the case if variables are kept alive during
the register bottleneck in the code. These variables can
be found with CUDAvis and altered by adding or re-
moving volatile or const in high-level code. This intro-
duces a number of additional computational instruc-
tions, depending on the complexity of the expression
to be recalculated, and should be taken into account
in the decision whether or not to perform rematerial-
ization.

• Instruction reordering has the potential to reduce
register count. This can be done both in high-level
code or by the explicit declaration of variables, steering
the compiler to a different register assignment.

• The thread count can be adjusted to achieve a higher
active threadblock count. This can be done using equa-
tion 1.

From equation 1, it can be seen that if the denominator is
greater than the nominator, the resulting number of active
threadblocks will be zero. In order to still execute the code,
register spilling is performed into the off-chip memory. Since
this reduces performance significantly, kernels that use too
many registers are typically adjusted by the programmer to
fit onto the register file anyhow. However, when the shared
memory is not entirely used, register spilling can be per-
formed onto the shared memory, resulting in an access time
reduction equal to the memory latency, typically a factor
400 to 600 [10].

Currently, the register pressure reduction techniques are to
be performed by hand. It would be even better if NVIDIA
would incorporate equation 1 and the guidelines in their
compiler ptxas. This would require algorithm descriptions
to automate decisions. These algorithm descriptions are pre-
sented in pseudo-code and more detail in [13].

6. CONCLUSION
Since GPUs provide orders of magnitude more raw compu-
tation power than traditional processors, they are a popular
target for computationally intense applications. However,
the development tools leave the programmer with the non-
trivial task to exploit this computational power. One of
these tasks is to reduce the register usage, potentially lead-
ing to a significant performance increase. Previously, details
on the register usage where hidden from the programmer.
Now, a new tool, named CUDAvis, is introduced to decode

and visualize GPU binaries. With the help of the tool and
the presented guidelines, register pressure can be reduced,
leading to an increased active thread count.

To illustrate the use of CUDAvis and the presented guide-
lines, an example algorithm’s speed-up is increased by 33%
compared to already optimized GPU code. Also, for 11
CUDA SDK examples, register usage is reduced by an aver-
age of 18%. Additionally, this work presents the guidelines
as potential improvements to the compiler, enabling regis-
ter pressure reduction to be performed automatically. The
guidelines include a virtual register boundary aware alloca-
tion, improved instruction reordering and rematerialization
of register values. Both instruction reordering and remate-
rialization have the potential to reduce register usage. To-
gether with a virtual register boundary aware allocation, this
can lead to more active threads. In the case of a memory
access latency bound kernel, twice as much active threads
can reduce execution time by half.
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