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ABSTRACT

Graphics Processing Units (GPUs) are suitable for highly
data parallel algorithms such as image processing, due to
their massive parallel processing power. Many image pro-
cessing applications use the histogramming algorithm, which
fills a set of bins according to the frequency of occurrence of
pixel values taken from an input image.

Histogramming has been mapped on a GPU prior to this
work. Although significant research effort has been spent in
optimizing the mapping, we show that the performance and
performance predictability of existing methods can still be
improved. In this paper, we present two novel histogram-
ming methods, both achieving a higher performance and
predictability than existing methods. We discuss perfor-
mance limitations for both novel methods by exploring al-
gorithm trade-offs.

Both the novel and the existing histogramming methods
are evaluated for performance. The first novel method gives
an average performance increase of 33% over existing meth-
ods for non-synthetic benchmarks. The second novel method
gives an average performance increase of 56% over existing
methods and guarantees to be fully data independent. While
the second method is specifically designed for newer GPU
architectures, the first method is also suitable for older ar-
chitectures.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]|: Parallel Architectures

Keywords
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cessing

1. INTRODUCTION

Many data-mining and image processing applications use
histograms for data analysis. Histogramming creates bins
which are filled according to the frequency of occurrence in
the data-set. In the field of image processing, histogramming
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is used among others for image enhancement, image segmen-
tation and image compression applications [1] [5]. Devices
such as cameras, televisions, printers, displays and mobile
devices use histogramming for a variety of purposes [5].

Although histograms are trivial to compute on a sequen-
tial processor, computation on a parallel processor is not
straightforward. Many-core architectures such as the GPU
(Graphics Processing Unit) are becoming increasingly im-
portant and are nowadays commonly available in personal
computers [12]. Compared to a traditional CPU architec-
ture, a GPU dedicates a large amount of its chip area to
small processing elements, while using a relatively small
amount of chip area for control logic and caches. A GPU
contains a number of multiprocessors, each executing in-
structions in an SIMT (Single Instruction, Multiple Thread)
manner and dividing the workload over a number of smaller
processing elements.

Since GPUs are popular within the field of image process-
ing [11], the question arises as to how the histogram algo-
rithm should be adjusted to make use of a GPU’s hardware
efficiently. A number of existing GPU implementations are
already available, but perform at best at 13% of the peak
performance of the GPU' [13]. Additionally, they show a
large variance with worst-case execution times a factor of 10
higher than best-case execution times, limiting the suitabil-
ity for real-time applications.

To illustrate the need to improve the histogram algorithm,
we consider processing a video stream with a resolution of
1920x1080. To achieve 60 frames per second, we require
all processing to be completed in ~16ms. Performing his-
togramming on a high-end GPU gives us a worst case execu-
tion time of ~2ms, already limiting possibilities for further
processing. A low-end GPU has a worst-case execution time
of ~25ms, and can thus not meet throughput requirements.

In this paper, we introduce existing mappings and present
two novel histogramming methods. We evaluate the perfor-
mance trade-offs by exploring a number of different map-
pings. The main contributions of this paper are:

o We present two novel histogramming methods targeted
at GPUs. Both methods outperform existing meth-
ods and increase performance predictability. While the
first method is more suitable for older NVIDIA GPU
architectures, the second method performs better on
newer architectures?.

e We explore and discuss algorithmic design choices for
both methods, and we identify and evaluate perfor-

!Tested using a GeForce GTX470, 8-bit inputs, and 256 bins
20lder: G80/G92/GT200. Newer: GF100 (Fermi)



mance limitations.

This paper is organized as follows. First, we discuss re-
lated work. Then, we give a brief background on GPU pro-
gramming in section 3. Section 4 introduce the state-of-
the-art histogramming method. Section 5 briefly presents
the benchmark set and the used hardware. Following, we
present warp private histogramming and thread private his-
togramming in sections 6 and 7. Section 8 presents bench-
mark results and discusses performance limits. Finally, sec-
tion 9 concludes the paper.

2. RELATED WORK

Existing work describes a number of histogramming im-
plementations using the CUDA GPU programming frame-
work [9]. Podlozhnyuk presents two implementations in [13],
one for 64-bin and one for 256-bin histograms. Both imple-
mentations are included in the CUDA software development
kit. Two other implementations, presented in [17] by Shams
and Kennedy, support a range of bin sizes. Their meth-
ods target data-mining applications, reading 32-bit values
as input in contrast to Podlozhnyuk’s 8-bit input values.
Another CUDA implementation is found in [19], which is a
more straightforward implementation with a lower perfor-
mance.

Prior to the introduction of general purpose GPU pro-
gramming languages such as CUDA, the histogram algo-
rithm has been implemented using OpenGL by among oth-
ers [2], [3], [6] and [16]. The above discussed CUDA imple-
mentations perform significantly better, because of the use
of a more appropriate programming paradigm.

Other related work maps the histogramming algorithm
onto non-GPU multithreaded architectures. For example,
Ranger et al. describe a parallel implementation of his-
togramming using the MapReduce framework in [14], which
uses 24 CPU cores and achieves a performance increase of a
factor 9 over a single CPU core. Pankratius et al. present
another multithreaded implementation in [10], achieving a
speed-up of a factor 6 on a 8 core machine. The latter multi-
threaded application explores different implementations, of
which their concepts (e.g. atomic operations and core pri-
vate histograms) are applicable to a GPU implementation.

3. BACKGROUND

In this paper, the CUDA framework is used as a GPU pro-
gramming language, since it supports many C++ features,
has well maintained tools, and a large user-base. When pro-
gramming CUDA, the programmer is exposed to a large
number of concepts and properties [15]. For good under-
standing of this paper, we give an architecture overview in
figure 1 and introduce several basic CUDA concepts:

e The code running on the GPU, the kernel code, is ex-
ecuted by a number of threads, each having a unique
id. These threads are divided into groups of thread-
blocks, enabling the use of a shared memory and en-
abling synchronization within a threadblock. Outside
threadblocks, no synchronization is possible within a
kernel. On execution of the kernel, threads are sched-
uled by the hardware as warps in an SIMD-manner.
Warps are groups of threads (typically 32) that share
the same instruction counter, but are free to branch
independently.

e An on-chip shared memory is available, which is
shared within threadblocks. Access time of the shared
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Figure 1: High level abstraction of a GPU architec-
ture, consisting of a number of Single Instruction,
Multiple Thread (SIMT) multiprocessors. A multi-
processor consists of multiple CUDA cores.

memory is comparable with register access time [9].
The shared memory is banked to maximize through-
put.

e Memory accesses to the off-chip memory can be coa-
lesced as burst accesses by the hardware, which can
lead to a memory bandwidth increase of up to 16x [4].

e To hide memory latency, the GPU does not (entirely)
rely on caches, but instead switches to another thread
from a pool of thousands of active threads. As
a programmer, enabling this large amount of simul-
taneously active threads is important [7], but limited
by among others register and shared memory require-
ments.

4. REFERENCE METHOD

In this section, we introduce the state-of-the-art of CUDA-
based histogramming. Since we only consider 256-bin his-
togramming implementations, being a common requirement
for image processing [5], we discuss Podlozhnyuk’s 256-bin
method [13]. The method presented by Shams et al. [17] is
based on the same techniques. However, since their method
focuses on data-mining applications, they require 32-bit in-
puts and support larger bin sizes. For image processing, in-
puts are typically 8-bit (either greyscale, luminance or one
RGB channel) and require at most 256 output bins. For
these reasons, and the fact that the implementation is fun-
damentally the same as Podlozhnyuk’s method, Shams et
al.’s method is not further discussed in this paper.
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Figure 2: A top level view of the reference his-
togramming method. Threadblocks calculate sub-
histograms, which are summed in a second kernel.

In Podlozhnyuk’s 256-bin histogramming method [13], the
elements in the input data-set are divided in blocks of equal
size. Each threadblock processes one block of work and pro-
duces one sub-histogram. Between different threadblocks in
a kernel, no synchronization is possible. Thus, to calculate



the final histogram, a second kernel is started, summing all
the intermediate sub-histograms. An overview is shown in
figure 2, in which the input elements, sub-histograms and
final histogram reside in the off-chip global GPU memory.

Next, we discuss the first kernel in more detail. Within
one threadblock, the fast on-chip shared memory is used to
store the sub-histograms. Values in the sub-histogram are
either incremented or not depending on the value of the in-
put element. This implies that accesses to the sub-histogram
are data dependent, and that multiple accesses can occur to
the same element at the same time. This introduces a prob-
lem, since operations to the shared memory are not atomic?.
This causes different threads (with unspecified execution or-
der) to read and write non-atomically to a-priori unknown
address spaces in the shared memory. When such a shared
memory collision occurs, only one memory write will suc-
ceed, but it remains unknown which.

We distinguish two types of shared memory collisions:
inter-warp (between different warps) and intra-warp (within
a warp). To solve inter-warp shared memory collisions, Pod-
lozhnyuk’s method introduces a second level of partial re-
sults, referred to as warp-histograms. As seen in the detailed
view in figure 3, each warp calculates its own partial his-
togram. Then, after a threadblock synchronization barrier,
the warp-histograms are summed up as a sub-histogram.

level 0

Figure 3: A detailed view of histogramming at a
threadblock level.

Although this solves inter-warp shared memory collisions,
intra-warp collisions can still occur. Podlozhnyuk uses the
properties of warps to implement a virtual atomic operation
and to solve the intra-warp collisions. Figure 4 shows an
overview of the virtual atomic operation. First, the to-be-
incremented bin is loaded from the shared memory. The
value of the bin (27-bits) contains a tag from a previous
operation in the upper bits (5-bits for 32 threads). After
incrementing the bin, a thread-unique tag is added to the
upper 5 bits, and the entire 32-bit word is stored in shared
memory. Since other threads within the same warp could
have performed the exact same operation?, the stored value
is directly loaded back and compared against the calculated
value. If the values are the same, the operation is performed
successfully. If not, another thread has won the collision,
and the virtual atomic operation is repeated for the losing
threads.

Virtual atomic operations are only able to solve intra-warp
shared memory collisions, because of a warp’s properties: in-
side a warp, all threads are guaranteed to execute the same
instruction. However, outside a warp, a complete virtual
atomic operation could be performed in one of the stages

3Newer GPU architectures do support atomic shared mem-
ory operations (see section 6)

41f multiple threads write to the same location, only one
(a-priori unknown) thread will succeed
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Figure 4: The virtual atomic operation loop.

of another thread’s virtual atomic operation, causing poten-
tially incorrect behaviour.

When all threads within a warp access a different bin, the
overhead is one load, one compare and a few arithmetic op-
erations. However, when all threads within a warp access the
same bin, the whole virtual atomic operation is performed
32 times (the size of a warp) at most, causing significant
overhead. The difference between worst-case and best-case
performance can be as much as a factor 8.

5. BENCHMARK SET-UP

A number of benchmarks are presented to measure perfor-
mance. In this section we introduce the benchmark set, the
used hardware, and the applied optimization techniques.

5.1 Input data characteristics

For the benchmark test-set, we selected four greyscale im-
ages, each containing 2048x2048 8-bit pixels. The images
and their histograms are shown in figures 5(a), 5(b), 5(c)
and 5(d). Next to the images, two synthetic inputs are gen-
erated. Figure 5(e) show a random data distribution and its
histogram, and figure 5(f) show a degenerate data distribu-
tion and its histogram.

Image fruit d) Image: rabbit

e) Synthetic: random

f) Synthetic: degenerate

Figure 5: The input data-set and corresponding his-
tograms.

Although the presented test-set provides images with dif-
ferent characteristics and can be used to evaluate design
decisions, we provide two larger sets to evaluate average



performance. These sets include: (1) 23 high resolution
nebulae images are taken from the NOAO image gallery
(www.noao.edu/image_gallery), and (2) an equal number of
2048x2048 images from www.shanghaidailyphoto.com.

5.2 Hardware configuration

We use two hardware configurations in this paper, which
are shown in table 1. Unless stated otherwise, the GTX470-
system is used. All performance figures are averaged over
10 runs and are measured in terms of effective bandwidth.
We define this metric as the amount of processed input data
divided by the time to execute the algorithm. In this way,
a bandwidth close to the practical bandwidth will imply an
effective implementation, while a lower bandwidth will be
the result of a larger instruction or memory access overhead.

Table 1: Hardware configuration.
GTX470-system GTS250-system

Fedora 12 64-bit Fedora 12 64-bit

Operating System

Host CPU Core-i7 930 Core2Duo Q8300
GPU type GeForce GTX470 GeForce GTS250
CUDA cores 448 @ 1.2GHz 128 @ 1.8GHz
GPU practical BW  +100GB/s +55GB/s

5.3 Optimizations

All presented benchmarks are the result of highly opti-
mized code. We perform code optimizations including rec-
ommendations by NVIDIA [8], coalescing off-chip memory
accesses where possible, grouping input data as 32-bit ele-
ments, inspecting PTX-code (intermediate level assembly),
and using pointer arithmetic for address calculations. Addi-
tionally, a workload distribution sweep has been performed
for both methods, varying the amount of data processed per
thread versus the number of blocks, as discussed in [18].

Since we use a 64-bit operating system, GPU kernel code
is per default compiled as 64-bit. This results in the use
of 64-bit pointers for the GPU’s shared memory, causing a
significant overhead of 32-bit to 64-bit conversion instruc-
tions®. Therefore, all benchmarks are performed using the
compiler flag -m32, compiling 32-bit code.

6. METHOD 1: WARP HISTOGRAM

The reference GPU implementation of histogramming per-
forms at only 5% of the practical peak bandwidth of GPUs,
leaving room for improvement [13]. Therefore, three exten-
sions to the existing method of Podlozhnyuk are explored
in this section®, all based on the two-level approach (fig-
ure 2), including a private histogram per warp (figure 3).
We present the concepts of the three different extensions (the
first two are mutually exclusive), followed by a performance
comparison, which includes a baseline implementation.

6.1 Extension 1: Data shuffling

Since histogramming does not rely on order nor on coordi-
nates of data elements, input data can be rearranged freely
while still guaranteeing correctness. For image data, neigh-
bouring pixels typically have a high correlation, leading to
a high probability of incrementing the same bin.

With an additional pre-processing step, input data can be
rearranged in such a way that the amount of shared mem-
ory collisions is reduced. However, since the overhead of the

5This can be as much as 21% for the presented methods
5The concepts are extended, code is written from scratch

pre-processing step needs to be minimal, both reading and
writing to the off-chip memory must be coalesced. Figure 6
shows the implemented rearrangement pattern, used in ex-
tensionl. First, data is read coalesced from off-chip mem-
ory and stored in on-chip shared memory. Following, the
two-dimensional shared memory array’s x and y-coordinates
are swapped, resulting in the rearrangement of the data. Fi-
nally, as seen in figure 6, the data is written back coalesced
into the off-chip memory.
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Figure 6: The data rearrangement scheme used for
data shuffling in extensionl.

6.2 Extension 2: Giving up on coalescing

In the baseline implementation, memory accesses are co-
alesced. In order to coalesce reads, all threads in a warp
read sequentially from the input data. A coalesced mem-
ory access pattern is shown in figure 7(a). As stated before,
this can lead to a high probability of incrementing the same
bin for subsequent data elements. On the other hand, pix-
els further away from each other have a lower correlation,
leading to a lower probability of incrementing the same bin.
So, although memory accesses are coalesced in the baseline
implementation, performance degradation can occur due to
shared memory collisions for images with a high local corre-
lation.

<4—32—p<4—32—Pp4—32—p

(a) Coalesced
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(b) Uncoalesced

Figure 7: Different memory access patterns.

In extension2, access pattern restrictions are relaxed by
giving up on coalescing. Pixels can be read uncoalesced
within a warp, as shown in figure 7(b). This extension ben-
efits from a lower amount of shared memory collisions and
thus less virtual atomic operations, but performance can de-
crease due to a lower off-chip memory bandwidth.

6.3 Extension 3: Hardware atomics

The virtual atomic operation loop in figure 4 guarantees
correctness, but causes a large overhead of loads, stores and
arithmetic instructions. At the time when the reference his-
togramming method was designed, GPUs did not support
atomic shared memory operations. Since 2009, architectures
with compute capability 1.2 or higher (such as the GeForce
GTX470) do support shared memory atomic operations in
hardware. Extension3 uses hardware atomic support in-
stead of the virtual atomic operation loop.
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Figure 8: Performance comparison of the baseline
implementation, three extensions and a combination
of extensions 2 and 3.

Table 2: Results for non-synthetic benchmarks.

Name Average Relative Standard

bandwidth  performance deviation
baseline 6.1 GB/s 1.00 2.3 GB/s
extensionl 7.2 GB/s 1.18 1.0 GB/s
extension2 8.0 GB/s 1.31 0.7 GB/s
extension3 7.2 GB/s 1.18 2.6 GB/s
extension2+3 7.6 GB/s 1.25 1.4 GB/s

6.4 Extension selection

We measure performance for a baseline implementation
in which no extension is applied, the three extensions, and
a combination of extensions 2 and 3. Results are shown in
figure 8 and table 2. The images space and fruit show
the lowest performance for all methods, which can be ex-
plained from the two high peaks as seen in the histograms
in figures 5(a) and 5(c). We discuss the results of the three
different extensions individually:

e Performance figures of extensionl as shown in figure 8
include both the pre-processing and the actual his-
togramming steps. For best-case input data (random),
the penalty of performing a pre-processing step is sig-
nificant. However, for non-synthetic benchmarks, pre-
processing input data proves to be useful, showing
higher performance for most cases. On average for
non-synthetic benchmarks, extensionl shows a per-
formance increase of 18% as compared to baseline.
Additionally, the standard deviation is much lower, in-
creasing the performance predictability.

e Although the baseline implementation method is faster
for the random data-set, extension2 shows a higher
bandwidth and a lower standard deviation for non-
synthetic benchmarks. On average, extension2’s per-
formance is 31% higher compared to baseline for non-
synthetic benchmarks. Again, the standard deviation
is significantly lower compared to baseline.

e Using hardware atomic operations, performance in-
creases for data-sets with a low number of shared mem-
ory collisions, while performance decreases for data-
sets with a high number of collisions, in particular for
the extreme case of degenerate. On average, adding
hardware atomics to baseline shows a performance
increase of 18% for non-synthetic benchmarks, while
performance drops by 5% when added to extension2.

Extension2 shows the best results in terms of average
performance and standard deviation. Therefore, from this
point on, we refer to method1 as warp private histogramming
extended with uncoalesced accesses.

7. METHOD 2: THREAD HISTOGRAM

Since shared memory collisions can cause a significant
overhead, we present a method to circumvent such collisions.
Instead of one histogram per warp (seen in figure 2), now,
one histogram per thread is available, as shown in figure 9.
All threads access a number of elements and process them
sequentially. Since no memory locations are shared, no col-
lisions can occur, removing the need for atomic operations.

<-number of bins—»

Figure 9: Each thread computes its own partial his-
togram, which is then summed as a sub-histogram
within a threadblock.

However, thread private histogramming introduces a large
shared memory cost per thread. When processing 256 or
more elements per thread, bins need to be stored as 2-byte
integers, resulting in 512 bytes of shared memory usage per
thread. With the availability of 48KB shared memory, this
limits the number of threads to 96. This number is not suf-
ficient to completely hide pipeline and memory latencies [7],
which results in a performance penalty.

The shared memory in the multiprocessors of the GeForce
GTX470 architecture consists of 32 banks, each with up to
384 32-bit entries. Addressing is interleaved, e.g. succes-
sive 32-bit words are assigned to successive banks [9]. The
memory runs at half the clock speed of the two groups of
16 CUDA cores, each scheduled by its own warp scheduler.
Each group of 16 CUDA cores executes two half-warps in 2
successive clock cycles. In case of a shared memory access,
bank conflicts occur when two or more threads in a warp are
accessing a different row in the same bank. With a second
scheduler, the constraints tighten, since a total of 64 threads
need to access the shared memory conflict free to achieve full
performance.

We explore four different mappings of the histograms on
the shared memory. The mappings are shown in figures 10 -
13. In these figures, Ta denotes the thread number and
different colours refer to different warps. The characteristics
of the four memory mappings are summarized in table 3 and
are discussed in the following sections.

7.1 Mapping 1: layout 1, 32 threads

In the first layout, histogram bins are mapped onto the
shared memory by iterating over all threads, creating thread-
wide vectors of 16-bit thread private bins. The first mapping
has a total of 32 threads per threadblock, interleaving his-
togram entries over memory banks (as shown in figure 10).
This layout is automatically obtained by requesting a 16-bit
array on the shared memory.



Table 3: Shared memory mappings: overview of characteristics.

CUDA cores Bank Row Inter-warp  Address Active Active
active mismatch mismatch mismatch calculation threadblocks threads
Layout 1, 32 threads 16 cores chances chances never 2 PTX-instr. 3 threadblocks 96 threads
Layout 1, 64 threads 32 cores always chances never 2 PTX-instr. 1 threadblock 64 threads
Layout 2, 32 threads 16 cores never never never 6 PTX-instr. 3 threadblocks 96 threads
Layout 2, 64 threads 32 cores never never chances 6 PTX-instr. 1 threadblock 64 threads
e T B > cores are active, only one threadblock can be active on one
D > ltiprocessor at the same time (limited by shared memor
A TO T1 T30 |[T31 (TO T1 T30 |T31 mu p y y
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We improve the first layout by assigning all 32 threads
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Figure 10: Layout 1 with 32 threads. Two threads
have a chance to access the same bank.

Depending on the input data, threads have a chance to ac-
cess banks that are simultaneously accessed by other threads.
However, a bank conflict will only occur whenever a row mis-
match occurs, e.g. only in the case that a different histogram
bin and thus memory row is accessed within one bank. With
only 32 threads per threadblock, only one warp and thus one
group of 16 CUDA cores is active. On the other hand, we
can now schedule multiple threadblocks on the same multi-
processor. Because there is still shared memory available,
three threadblocks can be scheduled simultaneously on one
multiprocessor. Note that these other threadblocks will run
interleaved on the same 16 CUDA cores.

7.2 Mapping 2: layout 1, 64 threads

The second memory mapping uses the same layout, but
has 64 threads per threadblock. This changes the distribu-
tion of histograms over the shared memory banks as seen
in figure 11. Now, the first 16 banks are occupied by the
first warp’s histograms, while the next 16 banks are occu-
pied by the second warp. Banks are now always accessed
by two threads simultaneously, resulting in a bank conflict
if there is a row mismatch. Although both groups of CUDA

32 banks
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Figure 11: Layout 1 with 64 threads. Two threads
share one memory bank.

this reduces the chance of bank conflicts to zero. This layout
is obtained by implementing complex address calculation,
which can lead to performance decrease due to significant
instruction overhead.
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Figure 12: Layout 2 with 32 threads. Each thread
has a private memory bank.

7.4 Mapping 4: layout 2, 64 threads

In the final mapping, we enable 64 threads using the same
layout (see figure 13). While threads previously had a pri-
vate shared memory bank, banks are now shared between
threads from different warps. Although the two warps are
executing independently, the chance exists that all memory
banks are accessed twice, causing bank conflicts. In contrast
to prior mappings, this chance is not data dependent, but
dependent on the behaviour of the warp scheduler.
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Figure 13: Layout 2 with 64 threads, threads from
different warps share a memory bank.



7.5 Mapping selection

We compare the four mappings in terms of performance,
with results shown in figure 14. As expected, we observe full
data independence for the second layout. The first layout is
not data independent, and favors data-sets with a high data
correlation, which reduces the chances of a row mismatch.
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Figure 14: A comparison of the four memory map-
pings for method2.

Although at least 64 threads are needed to occupy all
CUDA cores [9], both memory layouts favor 32 threads. In-
creasing the threadcount from 32 to 64, shared memory pres-
sure increases and bank conflicts occur more often. This can
be explained through table 3, as bank mismatching worsens
for the first layout. For the second layout, bank mismatching
can occur in between different warps, causing bank conflicts.
While both 64 thread solutions enable more CUDA cores,
they both limit the number of active threadblocks, reducing
latency hiding possibilities.

Since mapping3 shows the best average performance and
the lowest variance, we refer to method2 from this point on
as thread private histogramming using mapping3.

8. EVALUATION

To evaluate the performance and characteristics of the
presented methods, we show benchmark results, evaluate
performance limitations, and discuss architecture suitability.

8.1 Benchmark results

In figure 15, we show the benchmarks of Podlozhnyuk’s
method and the two methods presented in this paper. While
methodl improves Podlozhnyuk’s method significantly for
most input images, method2 shows a much higher average
performance. Additionally, method2 is data independent,
resulting in a higher performance predictability.

However, we also performed benchmarks for the GTS250-
system (instead of the GTX470-system used in all other
benchmarks). In these benchmarks, method2 was not in-
cluded, since the shared memory size on the older archi-
tecture is insufficient. On the GTS250-system, methodl
shows an average performance of 4.6GB/s for non-syntethic
benchmarks, which is significantly more than the 2.4GB/s
achieved by Podlozhnyuk’s method.

8.2 Performance limitations

Although both methods show a higher performance and
a lower variance compared to Podlozhnyuk’s method, the
performance is still not close to the practical bandwidth peak

[ Test set (average of 4 images)

[ Nebula set (average of 23 images)
12 [ Shanghai set (average of 23 images)
[ Random data

B Degenerate data

Bandwidth [GB/s]

Podlozhnyuk method1 method2

Figure 15: Final benchmark results, comparing
the two presented methods against the reference
method. Tested using 50 images and 2 synthetic
inputs.

of the GPU. Therefore, the performance limitations of the
implemented methods are discussed.

Both presented methods are limited by the following as-
pects: (1) shared memory bank conflicts, and (2) the lack of
support to perform ALU operations directly on the shared
memory. Additionally, for method1, performance is further
limited by the atomicity problem: (1) intra-warp shared
memory collisions and the need for a virtual atomic opera-
tion loop, and (2) inter-warp shared memory collisions and
the need for histogram accumulation.

If it is assumed that no inter-warp nor intra-warp shared
memory collisions occur, performance increases significantly
for method1. This is illustrated in figure 16, in which the
baseline implementation is tested against two modified ver-
sions in which shared memory collisions are assumed not to
occur within warps (no_intra_warp) or not at all (no_intra
_inter_warp). Since they do occur, results for the data-sets
space, random and degenerate are incorrect. The fourth
data-set, ideal, consists of a specialized data distribution
in which shared memory collisions will not occur.
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Figure 16: The performance limitations of method1
are evaluated by assuming that atomicity is handled
automatically and at no cost.

From figure 16, it can be concluded that intra-warp shared
memory collisions cause the major part of the overhead for
methodl. Especially data-sets with a high correlation bene-
fit greatly, removing the need for multiple iterations of the
virtual atomic operation loop. Additionally, they benefit



from the fact that bank conflicts do not occur when threads
access the same row in a bank. This explains why the best
performance is achieved by the degenerate data distribu-
tion.

8.3 Architecture limitations

In [8], it is stated that the GPUs of compute capability
2.0 (such as the GeForce GTX470) might need 768 threads
per multiprocessor to fully hide pipeline latencies. Also, ac-
cording to [8], it is recommended to have at least 64 threads
per threadblock, assuming that multiple threadblocks can
be mapped onto one multiprocessor. Although this might
be true for most applications, method2 clearly does not fol-
low these performance guidelines. Even worse, the best per-
forming method has half of all processing elements idling at
any point in time, resulting in a huge waste of silicon area.

From these numbers, we can conclude that there is a mis-
match between the availability of shared memory (both in
terms of size and banks) and the number of CUDA cores
per multiprocessor (for GPUs of compute capability 2.0).
Although this might not be the bottleneck for most CUDA
programs, method2 does require an increase of the number
of shared memory banks to 64 to use all CUDA cores, en-
abling the use of 64 threads without bank conflict penalties.
To hide pipeline and memory latencies, more threads are
required. An increase of the memory size to 96KB enables
three threadblocks and thus 192 threads in total, improving
the performance of histogramming on GPUs even further. A
rough calculation estimates a performance gain of 2x when
the number of banks is increased and another gain of 3x
when the memory size is increased.

9. CONCLUSIONS

In this work, we presented two novel methods to perform
histogramming on a GPU. For the first method, three dif-
ferent extensions to an existing method were explored, each
resulting in a higher average bandwidth (33% at most) and
a lower variance for non-synthetic benchmarks compared to
existing methods. Although tested on the latest NVIDIA
GPU architecture, the first method is also suitable for older
architectures. The second presented method does not share
histograms over different warps and benefits heavily from
the increased amount of shared memory available on the lat-
est architectures. Different shared memory mappings were
explored, showing at most a 56% performance increase over
existing methods. Additionally, execution time is completely
input data independent, making histogramming suitable for
use in real-time applications.

Furthermore, we evaluated both novel methods. For the
first method, a performance limitation breakdown shows
that atomicity is the main performance bottleneck. For the
second method, we observed that the best performing im-
plementation uses half the number of CUDA cores available
and only 32 threads. From these numbers, we argued that
there is a mismatch between the number of CUDA cores
and the number of shared memory banks. Additionally, for
a high performance implementation, histogramming requires
a higher amount of shared memory.
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