
The Boat Hull Model: Adapting the Roofline Model to
Enable Performance Prediction for Parallel Computing

Cedric Nugteren Henk Corporaal

Eindhoven University of Technology, The Netherlands

{c.nugteren, h.corporaal}@tue.nl http://parse.ele.tue.nl

Abstract

Multi-core and many-core were already major trends for the past
six years, and are expected to continue for the next decades. With
these trends of parallel computing, it becomes increasingly difficult
to decide on which architecture to run a given application.

In this work, we use an algorithm classification to predict per-
formance prior to algorithm implementation. For this purpose, we
modify the roofline model to include class information. In this
way, we enable architectural choice through performance predic-
tion prior to the development of architecture specific code. The new
model, the boat hull model, is demonstrated using a GPU as a target
architecture. We show for 6 example algorithms that performance
is predicted accurately without requiring code to be available.

Categories and Subject Descriptors C.1.4 [Processor Archi-
tectures]: Parallel Architectures; C.4 [Performance of Systems]:
Modeling Techniques

General Terms Performance

Keywords Parallel computing, performance prediction, many-
core accelerators, the roofline model

1. Introduction

For the past five decades, single-core performance has shown an
exponential growth, enabling technology to become pervasive and
ubiquitous in our society. The exponential growth of single-core
performance has ended in 2004, making place for a parallel and
heterogeneous computing era. Trends such as multi-core and many-
core are expected to continue for the next decades. Although many-
core architectures such as the Graphics Processing Unit (GPU)
might be suitable for one type of application, other applications
might prefer multi-core processors. This creates a heterogeneous
computing environment, with both types of processors in one sys-
tem or even on a single chip.

With current and future processors, it becomes increasingly dif-
ficult to decide on which processor to run an application or algo-
rithm. Existing performance prediction techniques such as mathe-
matical models or simulators require code to be available and opti-
mized for a target processor. However, programming such proces-
sors has become increasingly challenging and time consuming [1].

Copyright is held by the author/owner(s).

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

ACM 978-1-4503-1160-1/12/02.

Therefore, a performance prediction method which does not require
code to be available is desirable.

In this work, we present the boat hull model. We modify the
roofline model [3] such that it generates multiple inverse rooflines.
Each of these inverse rooflines is specific for an algorithm class.
Available algorithm classes are defined using an algorithm classifi-
cation, of which more details are found in [2].

2. Background: the roofline model

The roofline model was introduced as an easy to understand perfor-
mance model capable of identifying performance bottlenecks [3].
This model gives a rough performance estimate based on the as-
sumption that performance is limited by either peak memory band-
width or by peak ALU throughput. The roofline model is processor
specific: for each processor there is a specific instance of the model.

 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

A
tt
a
in

a
b
le

 g
ig

a
fl
o
p
s
/s

e
c
o
n
d

Operational intensity [flops/byte]

Example roofline with 6 algorithms for a Geforce GTX470 GPU

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

peak FLOPS
non FMADD
memory-bw

scattered-bw
 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

Figure 1. Applying the roofline model to 6 example algorithms.

We map 6 algorithms onto the roofline model, of which the results
are shown in figure 1 for a GeForce GTX470 GPU. The location
of each algorithm is based on two aspects: 1) the performance
of a CUDA implementation executed on the GPU, and 2), the
operational intensity in ALU operations per off-chip load/store.

Two obstacles for using this model to predict performance are
observed: 1) the execution time is not directly visible, and 2), the
range of the predicted performance is very wide. For example, as
shown in figure 1, the performance of the X-projection algo-
rithm is a factor 7 beneath the memory bandwidth roof.

3. The boat hull model

Selecting which processor architecture is best suited for a given ap-
plication can be done using architecture models or hardware sim-
ulators. These methods do however require the presence of opti-
mized target architecture code, which is often not available when
making an architectural choice. The roofline model does give an
indication of the expected performance without requiring code, but
falls short when an application’s compute or data-access patterns

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

histogram

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

maximum

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

threshold

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

erode 7x7

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

X-projection

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity [ops]

Y-projection

0.091

 0.01

 0.1

 1

 10

 1 8 64 512

0.091

 0.01

 0.1

 1

 10

 1 8 64 512

0.091

Figure 2. Applying the boat hull model to 6 example algorithms for the GeForce GTX470 architecture. Red star symbols show the measured
performance, while the lines show the predicted performance. The legend is as shown in figure 1.

are non-ideal. To enable performance prediction prior to algorithm
implementation, we introduce a modified version of the roofline
model based on an algorithm classification presented in [2].

The modified model, referred to as the boat hull model, makes
the following changes to the roofline model:

• For each algorithm class, we fine-tune the original model to
match the properties of such a class. Because the amount of
off-chip data accesses is inherent to a class-architecture com-
bination, the metric on the horizontal axis of the model can be
changed from ‘operations per byte’ into ‘complexity’: the num-
ber of operations given for a class’ operator f() (see [2]).

• The metric on the vertical axis of the model is changed from
‘flops per second’ into ‘execution time’. This creates an inverse
view of the roofline model, resembling a boat’s hull.

We have developed a tool based on the boat hull model which
requires as inputs processor parameters and an algorithm class,
and outputs a visual model. The required processor parameters
are high level and are similar to those required for the original
roofline model, e.g. peak ALU performance and peak memory
bandwidth. The tool currently supports both CPUs and GPUs. For
each algorithm class, a set of parameters is pre-defined, limiting
the original roofline model’s roofs and ceilings. For example, on
a GPU, a convolution type of operation might perform a certain
number of scattered memory accesses based on its neighbourhood
size. These scattered accesses will limit the maximum achievable
bandwidth, which is taken into account in the class parameters.

4. Example application

To illustrate the use of this work, we present 6 example image
processing algorithms from a computer vision application. They
are targeted for GPU acceleration using a GeForce GTX470 and
are classified as shown in table 1. The classification is according
to the algorithm classification’s grammar and vocabulary, which is
explained in [2].

primitive classification

histogram 1024x1024|element → 256|shared
maximum 262144|element → 1|shared
threshold 1024x1024|element → 1024x1024|element
erode 7x7 1024x1024|neighb(7x7) → 1024x1024|element
X-projection 1024x1024|tile(1x1024) → 1024|element
Y-projection 1024x1024|tile(1024x1) → 1024|element

Table 1. Classification of 6 example image processing algorithms.

For each algorithm we generate a boat hull model based on the
corresponding algorithm class. The results are shown in figure 2, in
which the measured performance is marked with a red star symbol.
From the results, we observe that the performance of the algorithms
histogram, threshold and erode are accurately predicted. The
maximum primitive shows a higher execution time compared to the
predicted time, which is caused by its small problem size, making
the algorithm less suitable for GPU acceleration. Similarly, both
the X-projection and Y-projection algorithms suffer from
additional overheads for small problem sizes. Because memory
accesses might be scattered for algorithms such as X-projection,
a wider prediction range is given.

We compare the boat hull model (figure 2) with the roofline
model (figure 1). Both figures show the performance of the 6 exam-
ple algorithms. The roofline model appears not suitable for perfor-
mance prediction, while the boat hull model predicts performance
with a small error in most cases. Comparing to performance models
and architecture simulators, we observe that the boat hull model has
the following advantages: 1) it is straightforward to understand, 2)
it requires little architectural information, and 3), most importantly,
it requires no code implementation nor mapping for the target ar-
chitecture to be available.

5. Summary

In this work we presented a processor and algorithm class specific
visual model to predict an application’s performance. This model
is based on the roofline model, which is adapted to include algo-
rithm class information. With the new boat hull model, we are able
to predict performance without requiring code to be available. Pro-
grammers are not required to port and optimize code for the target
processors, which enables rapid processor selection early in the de-
sign process.

We have given an overview of the concepts and ideas behind the
boat hull model. We have also demonstrated the use of the model
for an example application, for which we showed the predicted and
measured performance.

References

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco.
GPUs and the Future of Parallel Computing. IEEE Micro, 31:7–17,
September 2011.

[2] C. Nugteren and H. Corporaal. A Modular and Parameterisable Classi-
fication of Algorithms. Technical Report No. ESR-2011-02, Eindhoven
University of Technology, 2011.

[3] S. Williams, A. Waterman, and D. Patterson. Roofline: an Insightful Vi-
sual Performance Model for Multicore Architectures. Communications

of the ACM, 52:65–76, April 2009.

