
The Boat Hull Model: Enabling Performance Prediction for
Parallel Computing Prior to Code Development

Cedric Nugteren Henk Corporaal
Eindhoven University of Technology, The Netherlands

http://parse.ele.tue.nl/
{c.nugteren, h.corporaal}@tue.nl

ABSTRACT

Multi-core and many-core were already major trends for the
past six years and are expected to continue for the next
decade. With these trends of parallel computing, it becomes
increasingly difficult to decide on which processor to run a
given application, mainly because the programming of these
processors has become increasingly challenging.

In this work, we present a model to predict the perfor-
mance of a given application on a multi-core or many-core
processor. Since programming these processors can be chal-
lenging and time consuming, our model does not require
source code to be available for the target processor. This
is in contrast to existing performance prediction techniques
such as mathematical models and simulators, which require
code to be available and optimized for the target architec-
ture.

To enable performance prediction prior to algorithm im-
plementation, we classify algorithms using an existing algo-

rithm classification. For each class, we create a specific in-
stance of the roofline model, resulting in a new class-specific
model. This new model, named the boat hull model, enables
performance prediction and processor selection prior to the
development of architecture specific code.

We demonstrate the boat hull model using GPUs and
CPUs as target architectures. We show that performance
is accurately predicted for an example real-life application.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: Modeling Techniques

General Terms

Performance

Keywords

Parallel Computing, Performance Prediction, The Roofline
Model, GPU, CPU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05 ...$10.00.

1. INTRODUCTION
For the past five decades, single-processor performance

has shown an exponential growth, enabling technology to
become pervasive and ubiquitous in our society. This ex-
ponential growth ended in 2004, limited by two aspects: 1)
it became unfeasible to increase clock frequencies because
of power dissipation problems, and 2), processor architec-
ture improvements have seen a diminishing impact [9]. To
re-enable performance growth, parallelism is exploited. En-
abled by Moore’s law, more processors per chip (i.e. multi-
core) was already a major trend for the past six years and is
expected to continue for the next decades [7]. While multi-
core is expected to enable 100-core processors by 2020 [7],
another trend (many-core) already yields more than 2000
cores per chip, enabled by using much simpler processing
elements. An example of such a many-core processor is the
Graphics Processing Unit (GPU).

These trends (multi-core and many-core) make processor
selection increasingly challenging. Which processor to use
for a given application set is far from trivial. It is simply not
feasible anymore to port an application to all target candi-
date processors. This is caused by two factors. Firstly, the
search space has expanded, as both multi-core and many-
core processors co-exist in one system or even on a single
chip [12]. Secondly, it has become increasingly challenging
and time consuming to program such processors [12].

To solve this problem of processor selection, we argue that
a performance prediction method which does not require
code to be available is desirable. This is in contrast to exist-
ing performance prediction techniques such as mathematical
models or simulators, which do require code to be available
and optimized for a target processor.

In this work we present the boat hull model. We use
an existing algorithm classification to classify algorithms.
Then, for each class, we adapt the roofline model [21] to in-
clude class information. In this way, we generate multiple
rooflines, each specific for an algorithm class. We present
an example application to demonstrate the new model. Al-
though we focus in this work on the domains of image pro-
cessing and computer vision, we believe that the concepts of
the boat hull model can be extended to other domains.

The remainder of this paper is organized as follows. First,
in sections 2 and 3, we present related work and background
information respectively. Following, in section 4, we intro-
duce the boat hull model. In section 5, we evaluate the work
by predicting the performance of an example real-life appli-
cation with the new model. Finally, we discuss future work
in section 6 and conclude in section 7.

2. RELATED WORK
In this work, we present a new method to perform perfor-

mance prediction. In this section we therefore discuss related
work on performance prediction techniques. Additionally,
since we base our work on an algorithm classification, we
discuss existing algorithm classification methods.

2.1 Performance prediction methods
Traditionally, performance prediction is achieved using

analytical performance models or detailed hardware simu-
lators. For many-core architectures such as the GPU, mul-
tiple detailed performance models (e.g. [2], [11] and [19]) and
hardware simulators (e.g. [3]) exist. These performance pre-
diction techniques are both based on detailed knowledge of
the hardware architecture and on the presence of optimized
code for the target architecture, both of which we assume
not to be present in our work.

In recent work, performance was predicted for a Convey
HC-1 processor using an idiom recognizer tool [6]. This tool
analyzes reference source code to find idioms and predicts
performance based on the presence of these idioms. Similar
to the goals of our work, their tool does not require code to
be available for the target architecture. However, in contrast
to our work, their work does not target multi-core CPUs and
GPUs, is based on limited algorithm classes (or: idioms),
does not provide an insightful visual model, and does require
the presence of reference code.

2.2 Algorithm classification methods
Many variations of algorithm classifications have been in-

troduced as part of work on algorithmic skeletons [8], for
example [4]. In [5], a survey of 10 different classifications
is presented. They include on average 4 classes, with divide

and conquer, pipeline, and farm being the most common
among all 10 classifications. These types of classes distin-
guish algorithms at a coarse-grained level, while we use a
much finer-grained classification in this work.

Classifications for other purposes exist, such as dwarfs,
computational patterns [1], and design patterns [13]. These
even less detailed classifications introduce classes as a scheme
to capture solutions for recurring design problems in system-
atic ways. They are intended to be used in natural language
rather than with automated tools.

Another existing algorithm classification intended to be
used for algorithmic skeletons is the classification presented
in [15]. This classification does distinguish algorithms at
a fine granularity, and is therefore used in this work. An
overview of this classification is presented in section 3.2.

3. BACKGROUND AND MOTIVATION
We base our work on the roofline model an on an existing

algorithm classification, which we both introduce in this sec-
tion as background information. Additionally, we motivate
the approach taken in this work.

3.1 The roofline model
Performance prediction and bottleneck analysis are two

topics that have become increasingly important for hetero-
geneous and parallel computing. The roofline model was in-
troduced as an easy to understand performance model capa-
ble of identifying performance bottlenecks [21]. This model
gives a rough performance estimate based on the assumption

 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256P
e

rf
o

rm
a

n
c
e

 [
g

ig
a

fl
o

p
s
/s

e
c
o

n
d

]

Operational intensity [flops/byte]

Example roofline with 6 algorithms for a Geforce GTX470 GPU

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

peak FLOPS
non FMADD

memory bandwidth
scattered bandwidth

 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

 1

 10

 100

 1000

 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

histogram

maximum

threshold

erode 7x7

X-projection

Y-projection

Figure 1: Applying the roofline model to an example
GPU. The red stars represent the measured perfor-
mance of example algorithms.

that performance is limited either by peak memory band-
width or by peak ALU throughput. The roofline model is
processor specific: for each processor there is a specific in-
stance of the model.

In the roofline model, performance is measured in oper-
ations per second, which will either be memory bound or
compute bound, dependent on an application’s operational
intensity (given in operations per byte). Because not every
application will reach the peak performance (and thus the
roof of the model), multiple ceilings can be added, denoted
by properties such as limited instruction level parallelism
or scattered memory accesses. These properties make the
model suitable for bottleneck analysis and guidance during
application development.

To illustrate the use of the roofline model, we map 6
example algorithms onto the roofline model for a GeForce
GTX470 GPU. The results are shown in figure 1. The lo-
cation of each algorithm is based on two aspects: 1) the
performance of a CUDA implementation executed on the
GPU, and 2), the operational intensity in ALU operations
per off-chip load/store.

We observe two obstacles if we want to use this model to
predict performance: 1) the execution time is not directly
visible, and 2), the range of the predicted performance is
very wide. For example, as shown in figure 1, the perfor-
mance of the X-projection algorithm is a factor 7 beneath
the memory bandwidth roof.

3.2 Algorithm classification
In [15], a well-defined fine-grained algorithm classification

is introduced. The granularity of such a classification is of
high importance for the applicability. When using the clas-
sification for performance prediction, a finer-grained classifi-
cation might yield a more accurate prediction. On the other
hand, if the classification is coarser-grained, it can be eas-
ier to use and to understand. The classification presented
in [15] finds a solution to this trade-off by introducing a
modular and parameterisable classification. This enables a
fine-grained classification, while using a limited vocabulary.

We briefly illustrate the classification by giving four ex-
ample code snippets and their corresponding classes. These
examples, shown in listing 1, are classified as follows:

• In lines 1-2 a vector of size K is element-wise multi-
plied, incremented, and stored as another vector. Since
every element of the input corresponds to an element

of the output and the vector size is K, we classify this
code snippet as ‘K|element → K|element’.

• The for-loop in lines 4-5 performs a similar opera-
tion, but now also requires two neighbours to com-
pute one output element. The classification becomes
‘K|neighbourhood(3) → K|element’, since the neigh-
bourhood is of size 3 (including the element itself).

• Similar to the code snippet in lines 1-2, the code in
lines 7-12 performs an element to element computa-
tion. However, in this case, we process two dimen-
sional matrices of size 10 by 10. The code is therefore
classified as ‘10x10|element → 10x10|element’.

• The final snippet (lines 14-15) processes the input per
element, but stores the result in a shared output. It is
therefore classified as ‘K|element → 1|shared’, with 1
being the size of the output.

The algorithm classification captures both the parallelism
as well as the data access dependencies. Further details and
more code examples can be found in [15].

1 for (i =0; i<K; i=i +1)
2 B[i] = 2 ∗ A[i] + 5 ;
3
4 for (i =0; i<K; i=i +1)
5 B[i] = 0 .3∗A[i −1] + 0 .4∗A[i] + 0 .3∗A[i +1] ;
6
7 for (a=0; a<10; a=a+1)
8 for (b=0; b<10; b=b+1)
9 value = A[a] [b] ;

10 i f (va lue > 255)
11 value = 255 ;
12 B[a] [b] = value ;
13
14 for (i =0; i<K; i=i +1)
15 B = B + A[i] ;

Listing 1: Four example code snippets of different
algorithm classes.

4. THE BOAT HULL MODEL
Selecting which processor architecture is best suited for

a given application can be done using architecture models
or hardware simulators. These methods do however require
the presence of optimized target architecture code, which is
often not available before selecting a processor. Although
not designed for this purpose, the roofline model does give
an indication of the expected performance without requir-
ing code, but falls short when an application’s compute or
data-access patterns are non-ideal. To enable performance
prediction prior to algorithm implementation, we introduce
a modified version of the roofline model based on the algo-
rithm classification presented in [15].

The modified model, referred to as the boat hull model,
makes the following changes to the roofline model in order
to enable performance prediction:

• With use of the classification, the roofs and the ceilings
of the roofline model can be fine-tuned to match the
properties of a specific class. Because the amount of
off-chip data accesses is inherent to a class-architecture
combination, the metric on the horizontal axis of the
model can be changed from ‘operations per byte’ into
‘complexity’: the number of operations given for a
class’ operator f() (see [15]).

• Since application developers are primarily concerned
about execution time, the metric on the vertical axis
of the model is changed from ‘flops per second’ into ‘ex-
ecution time’, as is also briefly mentioned in [20]. In
combination with the change of the metric on the hor-
izontal axis, we create an inverse view of the roofline
model, resembling the cross section of a boat’s hull.

Furthermore, for accelerators such as the GPU, data trans-
fer time between the accelerator and a host processor can
influence whether or not to run an application on such an
accelerator. Therefore, the boat hull model is extended
to include data transfer cost between different processors.
Moreover, we can now enable performance prediction of a
complete application by combining multiple computational
parts of an application with host-accelerator data transfer.

In this section, we discuss the boat hull model. We first
give two toy examples to illustrate the model. Following, we
introduce and validate the boat hull model for both NVIDIA
GPUs and Intel CPUs. We shortly discuss our correspond-
ing tool, and finally evaluate the new model. In this section,
we use the notation primitive to refer to a computational
intensive part of an algorithm (i.e. kernel).

4.1 Code examples
To get an intuitive feel for the boat hull model, we dis-

cuss two toy examples. We take two out of the four examples
from listing 1 and use an NVIDIA GPU as a target processor
architecture. We set up two bounds for these code snippets:
the memory bound and the compute bound. The largest of
these will set the performance bound in terms of execution
time. In these examples, we use the notation Pcompute to
denote the theoretical peak architecture limitation for ALU
performance in operations per second, and Pcoalesced and
Puncoalesced to denote the practical peak memory perfor-
mance in bytes per second, for respectively sequential and
scattered memory accesses. We assume individual data ele-
ments to be 32-bit (4 byte) large in these examples.

• In lines 1-2, K elements are read and as many are writ-
ten to background memory in a coalesced fashion. If
we divide the amount of bytes accessed by the peak
bandwidth, we obtain the execution time in the case
that the snippet is memory bound: 2·K·4

Pcoalesced
. To ob-

tain the compute bound, we divide the amount of oper-
ations by the peak compute rate. Implementing every
iteration of the loop as a thread, we perform 2 oper-
ations per thread, plus an offset to calculate among
others the array index. With K iterations, this results

in: K·(2+offset)
Pcompute

.

• The example in lines 14-15 reads K elements coalesced,
but writes the result uncoalesced. The memory bound
becomes in this case: K·4

Pcoalesced
+ 1·4

Puncoalesced
. The

compute bound is similar to the snippet from lines 1-
2, but now performs only 1 operation. On a GPU, a
parallel reduction tree is used, which causes a certain
overhead. This is taken into account using the offset

variable: K·(1+offset)
Pcompute

.

In order to determine whether the code snippet is compute
or memory bound and to find the predicted execution time,
we evaluate both equations and identify the one that gives
us the highest execution time.

Table 1: Example classes and their corresponding parameters for a GPU boat hull model. The table lists for
each class an example from the domain of image processing. The expressions for αi and βi for neighbourhood-
based classes are left out for readability.

class example primitive w m o d c u floors

AxB|element → AxB|element binarization A·B 1 16 2·A·B d 0 c1
unordered AxB|element → AxB|element xy-mirroring A·B 1 16 2·A·B d 0 c1 and m1

AxB|tile(1xB) → A|element x-projection A B 4 · m A·B+A d 0 c1 and m1

AxB|tile(UxV) → A
U

x B
V
|element scale down A

U
·B
V

U·V 4 · m 2·A·B d 0 c1

AxB|tile(UxV) → AxB|tile(UxV) 2D-DCT A
U
·B
V

U·V 4 · m 2·A·B A·B A·B c1

AxB|element → A·UxB·V|tile(UxV) enlarge A
U
·B
V

U·V 4 · m 2·A·B d 0 c1
AxB|neighbourhood(NxM) → AxB|element 2D-convolution A·B N·M 64 2·A·B d+α1 β1 c1
AxB|neighbourhood(N) → AxB|element 1D-convolution A·B N 64 2·A·B d+α2 β2 c1
AxB|element → 1|shared sum A·B 1 16 A·B+1 A·B 1 c1
AxB|element → C|shared histogram A·B 1 64 A·B+N N A·B c1
AxB|element ∧ AxB|element → AxB|element differencing A·B 1 32 3·A·B d 0 c1

4.2 The boat hull model for example classes
In this section, we introduce the boat hull model for 11

example classes, which we present in table 1. These classes
are taken from [15] and are defined in more detail in [15]. To
introduce the boat hull model, we take NVIDIA GPUs as
example target processors. A similar approach can be taken
for other processors.

Analogous to the roofline model, we define a compute
equation (c0) and a memory equation (m0). While these
equations represented theoretical roofs in the roofline model,
they represent performance predictions in terms of execution
time in the boat hull model. These equations additionally
contain class-dependent variables (w, m, o, c, and u) in or-
der to create a distinguished model per class. The equations
further depend on the amount of operations performed on
input data, defined as the complexity of the operator f(),
which in turn is defined as part of the classification. For an
NVIDIA GPU, we define these equations as:

c0 =
w · (fcomplexity · m + o)

Pcompute

(Compute equation)

m0 =
c

Pcoalesced

+
u

Puncoalesced

(Memory equation)

Similar to the roofline model, performance is either com-
pute bound (by c0) or memory bound (by m0). Therefore, to
find the execution time, we take the maximum value of these
equations. The complexity of the operator (fcomplexity) re-
mains variable in these equations, while Pcompute, Pcoalesced

and Puncoalesced represent peak limits of the processor and
are constant for a given GPU model. The class-dependent
variables (w, m, o, c, and u) are set as shown in table 1 for
a number of example classes and are defined as:

w: This represents the amount of parallel work-units.
For a large number of classes, this is equal to the input
data size. In the case of a GPU, w reflects the number
of worker-threads which can be spawned and possibly
be executed in parallel.

m: A modifier for the amount of computations per work-
unit. This is used for example for tile and neighbour-
hood based computations, for which the operator f()
is applied multiple times per work-unit. For other
classes, m equals 1.

o: The offset per work-unit. In the context of GPUs,
this can be seen as the class-specific initialization per
thread, such as index computation and pre-loading
data into on-chip memory. The values for o are es-
timates obtained experimentally and are rounded to
powers of two. The prediction is not very sensitive
for this variable: for large values of fcomplexity o is in-
significant (equation c0) and for small values it is likely
that equation c0 is not used at all (memory bound).
The offset is responsible for the curve in the compute
equations, as seen later on in figures 2, 3 and 7.

d: The total amount of input plus output data to be
accessed.

c: Amount of compulsory off-chip memory accesses in a
coalesced manner (i.e. sequential).

u: The amount of compulsory off-chip memory accesses
in an uncoalesced manner (i.e. scattered).

For the variables d, c and u, we consider only compulsory
memory accesses. Any accesses to local memories in case of
data re-use are not added to these variables.

Not all relevant characteristics can be captured by classes,
some are still dependent on the operation f() performed.
Therefore, we add floors to the boat hull model (similar to
ceilings in the roofline model). For a GPU, we define a
compute floor (c1) and a memory floor (m1). These floors
can limit performance, but only for a limited amount of
classes. For the example classes, the floors applicable are
shown in the last column of table 1. The floors are given as:

c1 =
c0

2
(Non fused multiply add)

m1 =
d

Puncoalesced

(Scattered memory accesses)

To obtain the execution time including host-accelerator
data transfers, we have to accumulate the presented equa-
tions (cx and mx) with CPU-GPU data transfer cost (t0).
We assume a copy-in and a copy-out of all the input and
output data over a data bus (e.g. PCI Express). The total
data transfer time is dependent on the peak practical band-
width of the bus (Bbus) and the amount of data transferred
(the class variable d). The equation for t0 is as follows:

t0 =
d

Bbus

(Host-accelerator data transfer)

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

2048x2048|element -> 2048x2048|element

GTX470

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

unordered 2048x2048|element -> 2048x2048|element

GTX470

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
scattered bandwidth (m1)

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

2048x2048|tile(8x8) -> 2048x2048|tile(8x8)

GTX470

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

2048x2048|element -> 2048x2048|element

GTS250

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTS250

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTS250

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTS250

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

2048x2048|neighbourhood(3x3) -> 2048x2048|element

GTX470

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Complexity of f [ops]

2048x2048|element -> 1|shared

GTX470

primitives
synthetic primitives

peak compute performance (c0)
non fused multiply add (c1)

memory bandwidth (m0)
 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1024

GTX470

Figure 2: Six examples of the boat hull model applied to GPUs. We show five different classes taken from
table 1 for the GTX470 GPU and show one example class for the GTS250 (bottom left). The model is
validated against synthetic primitives (orange circles) and real-life examples (red stars). The dashed lines
furthermore show the total predicted execution time, including host-accelerator data transfers.

4.3 Validating the boat hull model
To validate the boat hull model, we take primitives from

the image processing domain as examples. We target two
different GPUs from NVIDIA: a Geforce GTS250 and a
GeForce GTX470. The characteristics of these two exam-
ple GPU models are given in table 2. Pcompute is obtained
from the product specification of the GPUs, while the band-
width values are obtained using the bandwidthTest program
supplied by the NVIDIA CUDA SDK [17].

Table 2: Characteristics of two example NVIDIA
GPUs, further referred to as GTX470 and GTS250.

GeForce GTX470 GeForce GTS250

compute capability sm 20 sm 11
Pcompute 1089 GFLOPS 470 GFLOPS
Pcoalesced 95 GB/s 56 GB/s
Puncoalesced 5.9 GB/s 3.5 GB/s
Bbus 5.1 GB/s 2.1 GB/s

We show examples of the boat hull model in figure 2
for five different classes1 taken from table 1. For the class
‘2048x2048|element → 2048x2048|element’, we show a graph
for both the GTX470 and the GTS250 GPU. For the other
five classes, only the graph for the GTX470 GPU is shown.
In figure 2, we show the predicted execution time based on
the equations c0, c1, m0 and m1. To verify correctness of the

1We assume elements to be 32-bit integers in these examples.

model, we add a number of synthetic primitives (orange cir-
cles in figure 2) and real-life primitives (red stars in figure 2).
The synthetic primitives are artificially constructed and vary
in complexity, instruction mix (add, mul, fma) and instruc-
tion type (int, float). For classes with the ‘unordered’ pre-
fix, they also vary in memory access pattern. The real-life
primitives are taken from the image processing domain and
contain primitives such as binarization, gamma correction,
rotation, xy-mirroring, 2D-DCT, 2D-convolution, adaptive
binarization, sum and dilation.

Furthermore, by accumulating c0, c1, m0 and m1 with
the equation for the host-accelerator data transfers (t0), we
achieve a predicted total execution time, including CPU-
GPU data transfer. This is given in figure 2 as dashed lines.
The colour of the dashed lines is based on the same colour
scheme as for the solid lines. Because data transfer is trivial
to model and to improve the clarity of the graphs, we show
no measurements for the total execution time in figure 2.

We briefly evaluate the results of figure 2 and draw the
following conclusions:

• The predicted performance matches the measured per-
formance closely: the measured execution time is ei-
ther equal or slightly higher compared to the predicted
value. The higher execution time can be attributed to
the model’s simplified view of the architecture.

• The boat hull model’s quality is consistent between
two different GPU models, even though they have dif-
ferent specifications and architectural properties (e.g.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity of f [ops]

2048x2048|element -> 2048x2048|element

Q8300

primitives (set 1)
primitives (set 2)
primitives (set 3)

multi-threaded vector (c0)
multi-threaded scalar (c1)

single-threaded scalar (c3)
memory bandwidth (m0) 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

Q8300

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

Q8300

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity of f [ops]

2048x2048|element -> 2048x2048|element

i7-930

primitives (set 1)
primitives (set 2)
primitives (set 3)

multi-threaded vector (c0)
multi-threaded scalar (c1)

single-threaded scalar (c3)
memory bandwidth (m0)

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

i7-930

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048

i7-930

Figure 3: The boat hull model for an example class for both the Q8300 and the i7-930 CPUs. The model is
validated against synthetic primitives, shown as circles in the graphs.

the GTX470 includes two levels of caches, which is not
present in the GTS250 GPU).

• The additional memory ceiling causes the ‘unordered
2048x2048|element → 2048x2048|element’ class to give
a wide prediction range. The synthetic primitives show
that different memory access patterns indeed fit within
this range, yielding a better performance when the
fraction of coalesced memory accesses is larger.

• A large number of the tested non-synthetic primitives
have a low complexity (fcomplexity < 10) making them
memory bound rather than compute bound.

4.4 The boat hull model for a multi-core CPU
So far, we have only demonstrated the use of the boat

hull model for NVIDIA GPUs. To demonstrate the suitabil-
ity of the model for a different type of processor, we apply
the boat hull model in this section to Intel multi-core CPUs.
Similar as for the GPUs, we take two CPU models with dif-
ferent specifications and a different micro-architecture. In
this section, we use notations for the theoretical peak ALU
performance (Pcompute), the practical peak memory band-
width (Pmemory) measured using STREAM [14], the sup-
ported number of simultaneous threads (Nthreads) and the
width of the vector lane (Wvector). The characteristics of
the two CPUs are given in table 3.

Table 3: Characteristics of two Intel multi-core
CPUs. They are further referred to as Q8300 and
i7-930.

Core 2 Quad Q8300 Core i7-930

micro-architecture Core Nehalem
Pcompute 40 GFLOPS 90 GFLOPS
Pmemory 4.7 GB/s 12.2 GB/s
Nthreads 4 threads 8 threads
Wvector 128 bits 128 bits

For the multi-core CPUs we re-use the compute and mem-
ory equations as given for the NVIDIA GPUs, but with a
slight modification to the memory equation, since memory
coalescing is not an issue. We also re-use the class depen-
dent variables w, m, o and c, which have the same meaning
as those given for GPUs. The equations are given as follows:

c0 =
w · (fcomplexity · m + o)

Pcompute

(Compute equation)

m0 =
c

Pmemory

(Memory equation)

Compute performance on the CPU might be limited by
single-threaded execution, scalar execution, or both. We
therefore introduce three compute floors. Without using
the vector extensions of the architecture, the peak compute
performance decreases by the vector lane width (Wvector).
Furthermore, single-threaded performance causes the peak
computer performance to drop by a factor Nthreads. The
compute floors are therefore defined as follows:

c1 =
c0

Wvector

(Multi-threaded scalar)

c2 =
c0

Nthreads

(Single-threaded vector)

c3 =
c0

Wvector · Nthreads

(Single-threaded scalar)

We furthermore identify instruction level parallelism (ILP)
as another compute floor. To simplify results, we assume in
this case that any loops are unrolled and ILP is maximized.

To illustrate the boat hull model for multi-core CPUs, we
select the ‘2048x2048|element → 2048x2048|element’ class
as an example. We enable all floors for this class and set the
class-specific variables as follows:

w = 2048 · 2048 m = 1

o = 4 c = d = 2 · 2048 · 2048

For the example class, we run three sets of synthetic primi-
tives on both architectures, while varying the complexity of
f() in terms of number of operations. Each set enables ei-
ther: 1) single-threaded scalar execution, 2) multi-threaded
scalar execution, or 3), multi threaded vector execution. The
boat hull models along with the performance of the synthetic
primitives are shown in figure 3 for the Q8300 and the i7-930
processors. We make the following observations with respect
to the results:

• For both CPU models, we see a good match between
the predicted and measured performance for the com-
pute bound synthetic primitives. The multi-threaded
vector operations match the peak compute rate of the
architecture, while the performance for multi-threaded
scalar operations is a factor 4 lower (assuming 32-bit
data elements). Single-threaded operations perform a
factor 4 or 8 lower, as predicted by the model.

• The multi-threaded synthetic primitives are able to
achieve the predicted memory performance. The pre-
diction is based on the OpenMP version of the bench-
mark STREAM [14], and does therefore not represent
the theoretical peak memory bandwidth. Reasons for
not reaching the theoretical peak bandwidth due to the
complex memory sub-system of a CPU are discussed
in more detail in [21].

4.5 The boat hull model tool
The boat hull model creates a different graph for each

processor-class combination. Since classes contain parame-
ters, a tool to automate the creation of such graphs can be
very helpful. We present in this section a small tool for this
purpose, which is available through our website2.

Similar to the boat hull model, the tool takes as an input
processor parameters and a class description. The proces-
sor parameters are as shown in tables 2 and 3. The class
description is the full class name, as given in table 1. The
class dependent variables w, m, o, c and u and the equations
are set by the tool itself. Currently, the tool supports GPUs
and CPUs for the 11 classes as shown in table 1.

Figure 4: An overview of the tool corresponding to
the boat hull model.

We give an overview of the tool in figure 4. Its main com-
ponent is a script using the graphing utility gnuplot, which,
after execution, generates a graph as shown in figures 2, 3
and 7. The script consists of three parts:

• A processor specific part, which is based on the pro-
cessor description given as input to the tool.

• A class specific part, which is generated from a user
supplied class description. The generator is written in
the Ruby scripting language.

• A common part, which is processor and class indepen-
dent. It contains the equations and the plot markup
settings.

2http://parse.ele.tue.nl/

4.6 Evaluating the boat hull model
In this section, we evaluate the boat hull model. Since the

model is solely based on class information and the primi-
tive’s operational intensity, we cannot expect a performance
prediction comparable to detailed architectural models or
simulators. With this in mind, we reflect on the boat hull
model in this section.

We have seen in this work that the boat hull model’s pre-
dicted performance is only roughly equivalent to the mea-
sured performance. This is due to the fact that many minor
limitations are not taken into account. For example, the
model does not take load balancing, cache behaviour and
register pressure into account. Furthermore, the operator
complexity (fcomplexity) will at best yield an estimate due
to aspects such as special instructions or compilation opti-
mizations, both of which could alter the prediction. Because
of these limitations, we presented the boat hull model as a
technique to enable a rough performance prediction which
can be used in an early design stage to determine whether or
not to select a certain processor and whether or not to de-
velop code for that processor. Once a processor is selected,
a more precise performance prediction could be made with
a detailed architectural model or simulator if necessary.

Although the presented technique does not rely on the
availability of optimized code for a target processor, we do
base the values for the class dependent variables w, m, o,
c and u on the best available code implementations. The
class dependent variables can simply be updated whenever
faster code implementations are available. If the program-
mer eventually decides to develop code for the target archi-
tecture, the predicted performance will only be reached if
the code is fully optimized for the target architecture.

Because the roofline model is intended to be used to help
a programmer improve performance rather than to predict
performance, it is of no surprise that the boat hull model
gives a much tighter bound on execution time. This is due to
the fact that the boat hull model creates multiple instances
of the roofline model, each specific to a given class. Since
algorithm classes embed information on parallelism as well
as on data access dependencies, much more information is
available to the boat hull model. This includes for example
data re-use information and synchronization requirements.

If we compare the boat hull model to detailed mathemati-
cal models and simulators, we find that the boat hull model
has the following advantages: 1) it is straightforward to ex-
tend to other or future processor architectures, 2) it requires
very little architectural information (only four parameters
for a GPU or CPU), and 3), most importantly, the boat hull
model does not require code implementation nor code opti-
mizations for the target architecture to be available. This
allows for rapid performance estimation early in product de-
sign trajectories.

5. CASE-STUDY APPLICATION
To illustrate the boat hull model we evaluate a real-life

computer vision application targeted at GPU acceleration.
This particular application is selected because of its wide
variety of (image processing) primitives. In the production
process of organic LEDs, the centers of individual LEDs have
to be identified under challenging throughput and latency
requirements. As explained in [10], this can be achieved
using the 3-stage fast focus on structures flow.

Figure 5: An example of the fast focus on struc-
tures application, which finds the centers of 9 LED
structures.

Figure 6: The case-study fast focus on structures
flow, in which a 1024x1024 pixel input image is
used and 10x10 LED structures are assumed to be
present.

An example of the fast focus on structures application is
shown in figure 5, in which the 3-stages are applied sub-
sequently: Otsu thresholding, erosion, and projection. A
flow chart is given in figure 6, in which the individual image
processing primitives are shown. As shown in figure 6, six
image processing primitives are targeted for acceleration, in
this case using a GPU. More information on the fast focus
on structures application is given in [10].

Table 4: Classification of the application’s image
processing primitives according to the algorithm
classification.

primitive classification

histogram 1024x1024|element → 256|shared
maximum 262144|element → 1|shared
threshold 1024x1024|element → 1024x1024|element
erode 7x7 1024x1024|neighb(7x7) → 1024x1024|element
X-projection 1024x1024|tile(1x1024) → 1024|element
Y-projection 1024x1024|tile(1024x1) → 1024|element

We classify the six primitives according to the algorithm
classification presented in [15]. The results3 are shown in ta-
ble 4. The application is executed using both of the GPUs
introduced in table 2: the GTX470 and the GTS250. For
each primitive we generate a graph using the boat hull model
tool. As input to the tool we supply the class names as
shown in table 4 and the GPU specifications as given in ta-
ble 2. The resulting graphs are shown in figure 7 for both
the GTX470 (top) and the GTS250 (bottom). In these fig-
ures, we mark the measured performance with a red star
symbol. We make the following observations with respect
to the results as shown in figure 7:

3The problem size of the primitive maximum is artificially
increased from 256 to 262144 elements, because the original
problem size is too small to be measured accurately.

• The performance of the primitives histogram, thresh-
old and erode is accurately predicted for both GPUs.

• The maximum primitive shows a higher execution time
for both GPUs compared to the predicted time. Even
though the problem size has been artificially increased,
it is still too small to yield a high occupancy on the
GPU and to reach its peak memory bandwidth. Al-
though the prediction is a factor 3 lower compared to
the measured performance, it hardly affects the abso-
lute performance of the complete application due to
the low execution time.

• Both the X-projection and Y-projection primitives
suffer from similar inefficiencies because of their rel-
atively small problem sizes. A wide prediction range
is given for primitives such as X-projection, because
memory accesses for this class might be uncoalesced.

• The results are consistent over both GPU models, ex-
cept for the X-projection algorithm. In that case we
see that the tighter constraints on memory coalescing
for the GTS250 results in a significantly higher execu-
tion time. Nevertheless, the measured performance is
still within the predicted range for both GPU models.

Furthermore, we evaluate the total execution time of the
fast focus on structures application and compare it to the
predicted performance. To do so, we assume that fused mul-
tiply add instructions do not occur, but make no assump-
tions on memory access patterns. We show the results in
table 5, in which we separately show kernel execution time
and CPU-GPU data transfer time.

Table 5: Predicted and measured execution time of
the case-study application. The difference is calcu-
lated using the average of the predicted execution
time.

GTX470 predicted measured difference

GPU kernels 1.66-2.32 ms 1.96 ms 2%
data transfers 0.95 ms 1.07 ms 11%
total 2.61-3.27 ms 3.03 ms 3%

GTS250 predicted measured difference

GPU kernels 3.21-4.24 ms 3.99 ms 7%
data transfers 1.90 ms 2.13 ms 11%
total 5.11-6.14 ms 6.12 ms 8%

From the results, we conclude that the measured perfor-
mance of the kernels falls well within the predicted perfor-
mance range for both GPUs. The range is due to the fact
that we assume the fraction of coalesced memory accesses
for the X-projection primitive to be unknown. Concern-
ing the CPU-GPU data transfer time, we observe that the
predicted values are too optimistic. This is attributed to
the fact that transferring smaller amounts of data over the
PCI-Express bus yields an increasingly higher overhead.

The roofline model is not designed to predict performance,
but can still be used for performance prediction. We there-
fore compare it briefly with the boat hull model. To do
so, we map the 6 primitives of the fast focus on structures
application onto the roofline model. We compare the re-
sults (figure 1) for the GTX470 architecture with the boat
hull model (top half of figure 7). We observe three major

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

histogram

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

0.726

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

maximum

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

0.030

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

threshold

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

0.087

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

erode 7x7

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

0.795

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

X-projection

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

0.226

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

Y-projection

0.091

 0.01

 0.1

 1

 10

 1 8 64 512

0.091

 0.01

 0.1

 1

 10

 1 8 64 512

0.091

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

histogram

1.057

 0.01

 0.1

 1

 10

 1 8 64 512

1.057

 0.01

 0.1

 1

 10

 1 8 64 512

1.057

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

maximum

0.053

 0.01

 0.1

 1

 10

 1 8 64 512

0.053

 0.01

 0.1

 1

 10

 1 8 64 512

0.053

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

threshold

0.142

 0.01

 0.1

 1

 10

 1 8 64 512

0.142

 0.01

 0.1

 1

 10

 1 8 64 512

0.142

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

erode 7x7

1.758

 0.01

 0.1

 1

 10

 1 8 64 512

1.758

 0.01

 0.1

 1

 10

 1 8 64 512

1.758

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

X-projection

0.864

 0.01

 0.1

 1

 10

 1 8 64 512

0.864

 0.01

 0.1

 1

 10

 1 8 64 512

0.864

 0.01

 0.1

 1

 10

 1 8 64 512

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Complexity [ops]

Y-projection

0.119

 0.01

 0.1

 1

 10

 1 8 64 512

0.119

 0.01

 0.1

 1

 10

 1 8 64 512

0.119

Figure 7: Applying the boat hull model to the fast focus on structures application for the GTX470 (top) and
the GTS250 (bottom) GPUs. Red star symbols show the measured performance of a CUDA implementation
running on these GPUs, while the curves show the predicted performance. The legend is as shown in figure 2.

differences. Firstly, the roofline model does not show the
execution time directly. This can cause a problem when
comparing two primitives, as one might have both a higher
‘performance’ and a larger execution time (e.g. erode). Not
showing the execution time makes it also less intuitive to
accumulate multiple primitives and/or data transfers for a
total performance prediction. Secondly, we observe that the
boat hull model gives a much tighter prediction. This is due
to the creation of class-specific models, as explained in the
paper. Lastly, we observe that the roofline model’s x-axis
requires the amount of loads and stores to off-chip memory,
while the boat hull model embeds this information in the
algorithm class. Determining which accesses go to off-chip
or on-chip memory might not be a trivial task.

6. FUTURE WORK
The applicability of a technique such as the introduced

boat hull model depends on the level of automation. In this
work, we presented a tool to automatically generate a boat
hull model graph. The generation of such a graph depends
on the availability of class parameters (as for example given
in table 1) and on architectural parameters. Class param-
eters are given for a number of example classes for GPUs
and CPUs. Other, currently not supported classes, will be
added in future work. Architectural parameters can be ob-
tained from processor specifications and existing benchmark
tools. Nevertheless, the identification of an algorithm class
currently remains a manual effort. In separate work, we aim
to identify classes automatically under the assumption that
a basic C implementation is available.

Currently, the boat hull model predicts performance for
a single primitive on a single (multi-threaded) processor. If

an application such as fast focus on structures would be ex-
ecuted on a system consisting of multiple processors, kernel
execution and data transfer might partly overlap. Future
work aims to provide a methodology to support complete
homogeneous and heterogeneous multi-processor systems.

We believe that the boat hull model can be a useful tool
for system and application designers, provided that the al-
gorithm classification can successfully classify a given appli-
cation. Therefore, we aim to validate the boat hull model
and the algorithm classification against a different domain in
future work. For example using the PolyBench benchmark
suite [18], which contains various linear algebra kernels and
solvers.

Lastly, we work towards integrating the boat hull model
as a run-time component into our skeleton-based source-to-
source compiler ‘Bones’ [16]. This enables performance pre-
diction at run-time based on the available hardware, which
can be used for task scheduling and mapping onto a suitable
processor.

7. CONCLUSION
In this work, we have introduced a method to estimate

performance of applications on multi-core and many-core
architectures prior to the implementation and optimization
of target specific code.

Our new method of performance prediction is based on
an existing algorithm classification and a modification to
the roofline model. We modified the existing roofline model
such that it generates multiple rooflines, each specific for a
given algorithm class. This new model, the boat hull model,
gives a prediction of an algorithm’s execution time on a given
processor based on the properties of the corresponding algo-

rithm class. The boat hull model gives a much tighter bound
on performance compared to the roofline model because of
the integration of class specific information. In contrast to
performance models and architecture simulators, the boat
hull model gives a performance prediction prior to the im-
plementation and optimization of target architecture specific
code. Moreover, the presented model does not even require
code to be available, pseudo-code or a high-level description
can be sufficient to predict an application’s performance.

In this paper we applied our methodology to different
GPUs and CPUs. We evaluated the model for a number
of synthetic benchmarks as well as for real-life examples,
from which we have shown that the boat hull model is ap-
plicable in practice. We furthermore demonstrated the use
of the new model for a case-study application. The applica-
tion’s algorithms were classified and their performance pre-
dicted using the boat hull model. We implemented a GPU
accelerated version of the application and showed that our
prediction for the complete application is within 8% of the
measured performance.

8. REFERENCES
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
View of the Parallel Computing Landscape.
Communications of the ACM, 52:56–67, October 2009.

[2] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D.
Gropp, and W.-m. W. Hwu. An Adaptive
Performance Modeling Tool for GPU Architectures. In
PPoPP ’10: 15th Symposium on Principles and

Practice of Parallel Programming. ACM, 2010.

[3] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and
T. Aamodt. Analyzing CUDA Workloads using a
Detailed GPU Simulator. In ISPASS ’09:

International Symposium on Performance Analysis of

Systems and Software. IEEE, 2009.

[4] W. Caarls, P. Jonker, and H. Corporaal. Algorithmic
Skeletons for Stream Programming in Embedded
Heterogeneous Parallel Image Processing Applications.
In IPDPS ’06: 20th International Parallel and

Distributed Processing Symposium. IEEE, 2006.

[5] D. K. G. Campbell. Towards the Classification of
Algorithmic Skeletons. Technical Report YCS 276,
University of York, 1996.

[6] L. Carrington, M. M. Tikir, C. Olschanowsky,
M. Laurenzano, J. Peraza, A. Snavely, and S. Poole.
An Idiom-finding Tool for Increasing Productivity of
Accelerators. In ICS ’11: International Conference on

Supercomputing. ACM, 2011.

[7] B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, B.-Y.
Su, M. Snir, K. Olukotun, P. Hanrahan, and H. Chafi.

Ubiquitous Parallel Computing from Berkeley, Illinois,
and Stanford. IEEE Micro, 30:41–55, March 2010.

[8] M. Cole. Algorithmic Skeletons: Structured Manage-

ment of Parallel Computation. MIT Press, 1991.

[9] S. H. Fuller and L. I. Millett. Computing
Performance: Game Over or Next Level? IEEE

Computer, 44:31–38, January 2011.

[10] Y. He, Z. Ye, D. She, B. Mesman, and H. Corporaal.
Feasibility Analysis of Ultra High Frame Rate Visual
Servoing on FPGA and SIMD Processor. In ACIVS

’11: Advanced Concepts for Intelligent Vision

Systems. Springer Berlin, 2011.

[11] S. Hong and H. Kim. An Integrated GPU Power and
Performance Model. In ISCA ’10: 37th Annual

International Symposium on Computer Architecture.
ACM, 2010.

[12] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland,
and D. Glasco. GPUs and the Future of Parallel
Computing. IEEE Micro, 31:7–17, September 2011.

[13] K. Keutzer and T. Mattson. A Design Pattern
Language for Engineering (Parallel) Software. In Intel

Technology Journal, 2010.

[14] J. McCalpin. Memory Bandwidth and Machine
Balance in Current High Performance Computers.
IEEE Computer Society Technical Committee on

Computer Architecture Newsletter, pages 19–25,
December 1995.

[15] C. Nugteren and H. Corporaal. A Modular and
Parameterisable Classification of Algorithms.
Technical Report No. ESR-2011-02, Eindhoven
University of Technology, 2011.

[16] C. Nugteren and H. Corporaal. Introducing ‘Bones’: A
Parallelizing Source-to-Source Compiler Based on
Algorithmic Skeletons. In GPGPU-5: 5th Workshop

on General Purpose Processing on Graphics

Processing Units. ACM, 2012.

[17] NVIDIA. CUDA C Programming Guide 4.0, 2011.

[18] L.-N. Pouchet. PolyBench: The Polyhedral
Benchmark Suite. http://www.cse.ohio-
state.edu/˜pouchet/software/polybench/.

[19] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A
Performance Analysis Framework for Identifying
Potential Benefits in GPGPU Applications. In PPoPP

’12: 17th Symposium on Principles and Practice of

Parallel Programming. ACM, 2012.

[20] S. Williams. Auto-tuning Performance on Multicore

Computers. PhD thesis, University of California,
Berkeley, 2008.

[21] S. Williams, A. Waterman, and D. Patterson.
Roofline: an Insightful Visual Performance Model for
Multicore Architectures. Communications of the

ACM, 52:65–76, April 2009.

