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Abstract—As graphics processing units (GPUs) are becoming
increasingly popular for general purpose workloads (GPGPU),
the question arises how such processors will evolve architecturally
in the near future. In this work, we identify and discuss trade-
offs for three GPU architecture parameters: active thread count,
compute-memory ratio, and cluster and warp sizing. For each
parameter, we propose changes to improve GPU design, keeping
in mind trends such as dark silicon and the increasing popu-
larity of GPGPU architectures. A key-enabler is dynamism and
workload-adaptiveness, enabling among others: dynamic register
file sizing, latency aware scheduling, roofline-aware DVFS, run-
time cluster fusion, and dynamic warp sizing.

I. INTRODUCTION

Performance of single-core processors has shown an expo-

nential growth for the past decades. This exponential growth

ended in 2004, mainly limited by the power wall [2]. Per-

formance growth was re-enabled through parallelism, i.e. by

placing multiple processor cores on a single chip. This has

led to heterogeneous computing environments, in which multi-

core CPUs are used in conjunction with massively parallel

accelerators. An example of such an accelerator is the graphics

processing unit (GPU), originally designed for graphics ren-

dering through OpenGL and DirectX, but used increasingly

nowadays for general purpose compute workloads (GPGPU)

through languages such as CUDA and OpenCL.

Programming of GPGPUs has become increasingly acces-

sible, leading to an increased use of GPUs to accelerate

parallel computations such as linear algebra, image processing,

finance, molecular dynamics, and graph traversal [5]. Although

GPUs are used for such computations in a wide range of form

factors - from mobile phones to supercomputers - the GPU

architecture itself is still primarily designed for its original

purpose: graphics. For this reason, there are many open

questions regarding GPGPU architecture design. In particular,

we believe that researchers and designers working on various

aspects related to GPGPUs (e.g. architecture, programming

languages, compilers, applications) can greatly benefit from

the identification and evaluation of high-level architectural

parameters for current GPU architectures and from an outlook

towards the future of GPGPU architectures. In the future,

as Moore’s law and technology scaling will continue, while

power consumption remains limited, so-called dark silicon [1]

will be introduced to microprocessors. A large number of

power hungry transistors will only be allowed as long as a they

are not all switched on together. To maintain steady growth

of GPGPU performance in new designs, dark-silicon will ask

for new workload-aware architecture improvements.

In this work we perform a study of high-level architectural

parameters with a focus on the future of GPGPU architectures.

Our contributions can be summarised as follows. We identify

three GPU architecture parameters, discuss their trade-offs and

provide an outlook for the future, keeping in mind trends

such as dark silicon1 and the shift towards dedicated GPGPU

architectures [5]. The parameters identified in this study along

with the architectural improvements proposed are as follows:

1) ACTIVE THREAD COUNT The number of threads active,

a key parameter to be able to hide pipeline and off-chip

memory access latencies. We propose dynamic register

file sizing and latency aware scheduling in section II.

2) COMPUTE-MEMORY RATIO The ratio between the com-

pute power (in GFLOPS) and the off-chip memory band-

width (in GB/s). We propose roofline-aware DVFS and

dynamic compute cluster disabling in section III.

3) CLUSTER AND WARP SIZING The amount of processing

elements in a compute cluster2 and the amount of threads

grouped to execute together. We propose run-time clus-

ter fusion and dynamic warp formation and sizing in

section IV.

As an example throughout the paper, we use NVIDIA’s G80

GPU [7], although most desktop GPU architectures have a

fairly similar high-level design. The G80 architecture has up

to 16 clusters, each containing 8 processing elements (PEs).

PEs in a cluster share an instruction cache, instruction fetch

stage, a register file, and an on-chip scratchpad memory.

II. PARAMETER 1: ACTIVE THREAD COUNT

One of the main characteristics of a GPU is its ability to

hide pipeline and off-chip memory latencies through zero-

overhead thread switching. If sufficient parallelism is exposed

and the GPU’s register file is large enough, these latencies

can be hidden completely. The main benefits of such an

architecture are: 1) the ability to use special high-throughput

high-latency off-chip memory (e.g. GDDR5), 2) caches are no

longer required to hide long access latencies, 3) simplification

of the micro-architecture: there is no need for out-of-order

superscalar execution, and 4), the ability to use a long pipeline.

A GPU needs a large register file to hide latencies. This

register file will be able to store the context for each of the so-

called active threads, enabling zero-cycle context switching.

For example, for the G80 with 8 PEs per cluster, the pipeline

latency for basic ALU operations is 22 cycles [10] and the

1Dark silicon comes at an increased design complexity cost, see also [1].
2Equivalent to NVIDIA’s multiprocessor (SM) and AMD’s compute unit.978-3-9815370-0-0/DATE13/ c©2013 EDAA



off-chip memory access latency is on average 600 cycles [10].

If we assume that instructions in a thread are dependent on

the previous instruction, we need at least 22 · 8 = 176 active

threads per cluster to hide the pipeline latencies. With off-chip

loads only, we need ±600 ·8 = ±4800 or more active threads.

In reality, 256 or 512 active threads per cluster on the G80 is

for most realistic workloads enough: not all instructions are

memory accesses and dependent on the previous instruction.

A. Trade-offs

Allowing a large active thread count requires a large register

file, consuming power and occupying chip area. However,

when the active thread count is not high enough to hide

pipeline and off-chip memory access latencies, performance

can drop significantly (proportional to the number of absent

threads in the worst case). The optimal value for this parameter

is dependent on many factors: the pipeline depth, the off-chip

memory characteristics, the amount of PEs per cluster, the

thread scheduling mechanism, and the workload.

Because the workload is typically unknown at processor

design time, dealing with this trade-off is a dynamic problem.

Performing a detailed workload analysis might help to get

valuable insight through the examination of distributions of

occurrences of off-chip loads and dependencies in typical

workloads. However, the behaviour of threads is difficult to

predict, as they do not execute in lock-step, but rather diverge

and arrive at different instructions at different times.

B. Outlook

As an outlook towards the future of GPGPU architectures,

we propose two techniques to improve performance and en-

ergy efficiency with respect to the number of active threads:

dynamic register file sizing and latency-aware scheduling.

With dark silicon reaching GPUs in the future, we pro-

pose the addition of a dynamically-sized register file to

each cluster. To determine which part of the register file

is required to accommodate a sufficient amount of active

threads, instruction sequences (e.g. at kernel-level) can be

analysed statically where possible and dynamically otherwise.

Switching the complete register file on will only be possible

if another component is switched off, e.g. a cache. Such a

register file will benefit from power savings (as shown for a

hierarchical register file [4]) for workloads that only require

a low amount of active threads, in contrast to current GPUs,

which greedily run the highest possible amount of threads.

Furthermore, we believe that an improved latency-aware

scheduling algorithm can reduce the required amount of

active threads. The thread-scheduler in the G80 architecture

(and in e.g. the GT200 and Fermi architectures) schedules

groups of threads (warps3) that are ready for execution in

a round-robin fashion, instruction per instruction [10]. For

example, in Listing 1, instruction 1 will first be executed for

all threads, followed by instruction 2, 3, and 4. However, since

instruction 4 is dependent on the result from the off-chip load,

3The term warp as used throughout this paper is NVIDIA specific, AMD
refers to the same concept with the term wavefront.

a large number of active threads is required to hide the latency

of instruction 3. In contrast, a latency-aware thread scheduler

would give preference to scheduling instructions 1, 2 and 3 for

a subset of the active warps first, such that the long latency

of instruction 3 can be hidden by executing instructions 1, 2

and 3 of a second subset of active threads. To hide the pipeline

latencies as well, the subset size must be set equal or larger to

the pipeline latency. A related idea (two-level warp scheduling)

shows potential: performance is increased by 19% [9].

i n s t r u c t i o n 1 : $ r0 ← 2
i n s t r u c t i o n 2 : $ r1 ← $r0 ∗ 4
i n s t r u c t i o n 3 : $ r2 ← l o a d [ $r1 ]
i n s t r u c t i o n 4 : $ r3 ← $r2 ∗ $r2

Listing 1. Example pseudo-assembly GPU kernel code.

III. PARAMETER 2: COMPUTE-MEMORY RATIO

The GPU architecture is known to be well-suited for

throughput-oriented applications [2]. This is accomplished by

two means: 1) by providing a large number of high clock

frequency processing elements, and 2), by providing a high

bandwidth to off-chip memory. While the first ensures a high

instruction throughput, typically measured in giga-floating

point operations per second (GFLOPS), the second enables

a high data throughput, measured in gigabytes/s (GB/s). The

ratio between the two (GFLOPS versus GB/s), the compute-

memory ratio, is an important design parameter for GPUs.
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Fig. 1. Roofline with several data points for a Tesla M2090 GPU.

Applications can either be compute-bound, i.e. limited by

the peak instruction throughput, or memory-bound, i.e. lim-

ited by off-chip memory bandwidth. The metric operational

intensity (measured in operations per byte) determines which

limit applies. We have collected operational intensities for two

benchmark suites in Table I: PolyBench/GPU and Rodinia4.

We note that benchmarks from PolyBench/GPU are overall

much smaller and more memory intensive, while Rodinia

benchmarks are more compute intensive. To visualise the

limitations of the compute-memory ratio, the roofline model

was introduced [11]. We give an example of the roofline model

for a Tesla M2090 GPU in Fig. 1, in which we also plot

the average operational intensities from the results of the two

suites from Table I. The roofline model shows the maximum

achievable performance of a specific application, which is

limited by one of the two bounds.

4PolyBench/GPU can be found at www.cse.ohio-state.edu/∼pouchet/
software/polybench/, Rodinia at www.cs.virginia.edu/∼skadron/wiki/rodinia/.



TABLE I
OPERATIONAL INTENSITIES FOR THE POLYBENCH/GPU (2DCONV - SYRK) AND RODINIA (BACKP - PATH) BENCHMARK SETS.

2dconv 2mm 3dconv 3mm atax bicg corr covar fdtd-2d gemm gesummv gramsch

Oper. int. [flops/byte] 1.35 0.50 1.60 0.51 0.50 0.50 0.50 0.50 2.26 0.67 0.25 0.65
Limit on Tesla M2090 mem mem mem mem mem mem mem mem mem mem mem mem

mvt syr2k syrk — backp bfs gauss hotspot kmeans nw particle path

Oper. int. [flops/byte] 0.50 0.70 0.67 — 3.41 0.94 2.08 27.33 4.15 8.79 1.99 14.33
Limit on Tesla M2090 mem mem mem — mem mem mem comp mem comp mem comp

A. Trade-offs

To increase the peak instruction throughput, a GPU designer

can add more processing elements, increase their clock fre-

quency, or increase the IPC of individual processing elements.

On the other hand, to increase the peak off-chip memory

bandwidth, a GPU designer can either increase the clock

frequency of the memory, or increase the bus-width between

the memory and the processor itself. Again, these design

choices are a dynamic problem: they have to be made based

on information from the workload. Performing a detailed

workload analysis will help towards solving the compute-

memory ratio trade-off for the average case, but will still result

in over-dimensioned hardware in practice: the variance among

applications (see Table I for example) is too large.

B. Outlook

For future GPGPU architectures, we need to create a

dynamic compute-memory ratio (or: roofline) to improve the

overall power efficiency. This dynamic roofline can either be

discrete, i.e. the GPU switches to fixed operation points, or

continuous. We distinguish two techniques to create a dynamic

roofline: roofline-aware DVFS and a dynamic cluster count,

and make a note towards increasing the operational intensity.

Dynamic frequency scaling can be used to reduce the clock

frequency of the GPU core or off-chip memory, which has a

linear impact on either the compute or the memory roofline.

For example, most benchmarks from PolyBench/GPU (see

Table I) allow halving the compute frequency without loosing

performance5, while saving a factor of two in terms of power.

Furthermore, dynamic frequency and voltage scaling (DVFS)

might be applied to lower the voltage as well as the frequency

for cubic gains in power (P = α · f · C · V 2). We therefore

propose a roofline-aware DVFS scheme to create a dynamic

roofline, saving power while maintaining performance.

Similarly, linear power gains can be obtained by temporarily

powering down complete clusters of PEs for memory-bound

workloads. Dynamic compute cluster disabling is enabled

by the GPU’s modular architecture and can be applied at

kernel-granularity. Again, such a technique lowers the compute

roofline, saving power without compromising performance.

Furthermore, we also identify the need to architecturally

increase the operational intensity of applications for future

GPGPUs. An increasing amount of GPU kernels will hit the

memory wall in the near future: the growth of compute per-

formance is predicted to outgrow memory bandwidth growth,

despite emerging technologies such as 3D-stacking [5]. To

5It should be noted that the maximum bandwidth might not be achieved
for low core clock frequencies due to a too low memory request rate.

maintain performance growth, future architectures will need

to improve data-locality by increasing sizes of register files,

scratchpad memories, and caches.

IV. PARAMETER 3: CLUSTER AND WARP SIZING

Processing elements in GPUs are typically clustered into

smaller groups. The G80 architecture for example can scale

up to 16 clusters, with each cluster containing 8 PEs. On each

cluster, instructions are executed as warps: groups of threads

executing in lock-step. In Table II we list several NVIDIA

GPUs along with their cluster and warp sizes. We identify the

cluster and warp sizes as our third GPU design parameter.

TABLE II
WARP AND CLUSTER SIZES FOR VARIOUS NVIDIA GPUS.

Cluster Warps issued per Warp Release
size cluster per cycle size year

G80 (Tesla) 8 1 32 2006
GT200 (Tesla) 8 1 32 2008
GF100 (Fermi) 32 2 32 2010
GF104 (Fermi) 48 4 32 2010
GK104 (Kepler) 192 8 32 2012
GK110 (Kepler) 256 8 32 2013

We define a (SIMD) cluster as a set of PEs that share

one or more common components (e.g. a memory, a pipeline

stage) that are inaccessible by the remaining PEs in the GPU.

For programming models such as CUDA and OpenCL, a

threadblock or workgroup typically has to map in its entirety

on a single cluster in a GPU. Within a G80 cluster, PEs share

among others an instruction cache, an instruction fetch and

decode stage, a scratchpad memory, and a texture cache.

Since PEs in a cluster share the first few pipeline stages

with other PEs in the G80 architecture, they are required

to execute the same instruction at the same time. A cluster

thus forms a natural fit to execute instructions from a single

warp. Nevertheless, in typical GPU architectures (as shown in

Table II), the warp size and the cluster size do not necessarily

match. In fact, on the G80, the 8 PEs in a cluster schedule the

execution of a single warp in time, i.e. using 4 clock cycles [7].

In this way, warps are used to create virtual clusters in time (32

PEs for this example). Energy is saved by creating two clock

domains, which is possible since only a single instruction

needs to be fetched and decoded every 4 cycles. Newer GPUs

complicate cluster design slightly, as they are able to issue

multiple warps per cluster per cycle [10].

A. Trade-offs

In order to highlight the trade-offs of cluster and warp

sizing, we discuss two extremes: a cluster size equal to the

total amount of PEs, and a cluster size of 1. For clarity, we



assume in these cases a warp size equal to the cluster size and

a single clock domain.

Many advantages can be found when designing a GPU as

one large cluster (e.g. a cluster size of 16 · 8 for the G80). If

we take the G80 cluster design as a starting point, we find the

following main advantages: 1) a significant area reduction and

power saving by sharing various stages of the pipeline (e.g.

instruction fetch, instruction decode, branch logic), 2) a single

(larger) scratchpad memory can replace the existing smaller

memories, 3) more inter-thread communication is possible

through the execution of potentially larger threadblocks or

workgroups, and 4), an increase in coalesced memory accesses

by recombining threads as detailed in [6]. At the other extreme

is a GPU architecture for which every cluster has only a single

PE. The main advantages for such a configuration are: 1) every

PE can execute independently from the others, i.e. there is

no branch divergence penalty, and 2) a cluster takes a small

fraction of the total chip area, making routing (e.g. of the clock

tree) relatively easy.

The advantages for each of these cases become automat-

ically disadvantages for the other. This creates a trade-off

with many factors, some of which are dynamic: an optimal

value can only be determined at run-time. The warp size can

furthermore be adjusted to create virtual clusters, sharing many

of the same trade-offs. However, instead of reducing the chip

area when creating larger clusters, a larger warp size will allow

a reduction in clock frequency of the first pipeline stages, as

only a single instruction needs to be decoded per warp.

B. Outlook

We propose two techniques to address the trade-offs for

cluster and warp sizing for future GPGPU architectures: run-

time cluster fusion and dynamic warp formation and sizing.

Because a large cluster size has many advantages, namely

in terms of area and energy savings, it is appealing to design

a GPU with such a configuration. However, such a large

cluster can result in a severe penalty in case of divergent

workloads: one or more orders of magnitude depending on

the amount of PEs and the workload. To still be able to

accommodate such workloads, we propose to split a larger

cluster in several smaller clusters at run-time, creating an adap-

tive configuration which can be changed at kernel-granularity

(through performing static analysis or profiling). To be able

to enable run-time cluster fusion, the hardware needs to

be able to accommodate the smallest cluster size and thus

include for example an instruction fetch and decode stage for

every cluster. Dark silicon will however justify these additional

area costs by power gating these components when the GPU

is configured for non-divergent workloads. Overall, a large

cluster will significantly improve power efficiency for non-

divergent workloads by saving power and increasing perfor-

mance through creating for example increased opportunities

for memory coalescing.

Secondly, we believe future GPGPU architectures will allow

dynamic warp formation and sizing. On current GPUs,

warps are formed statically based on thread indexing. How-

ever, several works have proposed to re-combine warps at

run-time [3], [8], [9], either to improve memory coalescing

or to reduce branch divergence. Apart from dynamic warp

formation, warp sizing can also play a major role to improve

energy efficiency. Warp sizing is further discussed in [6].

V. RELATED WORK

To the best of our knowledge, this is the first work to present

an overview of GPGPU design parameters and an outlook

towards the future. As for the presented ideas, 3 out of our 6

proposals have related work in literature: a hierarchical register

file is presented in [4], thread scheduling in [4], [9], and warp

sizing and formation in [3], [6], [8], [9].

VI. CONCLUSIONS

In this work, we presented an overview of GPGPU archi-

tecture parameters, identified trade-offs, and gave an outlook

towards the future of GPGPU design, keeping in mind trends

such as dark silicon. We identified and discussed trade-offs for

three architecture parameters: active thread count, compute-

memory ratio, and cluster and warp sizing. For each parameter,

we propose changes to improve current GPU design drastically

in terms of power and performance. The improvements as

discussed include: dynamic register file sizing, latency aware

scheduling, roofline-aware DVFS, dynamic compute cluster

disabling, run-time cluster fusion, and dynamic warp siz-

ing. Common to these improvements is the dynamism and

workload-adaptiveness of the architecture: future GPGPUs

will need to set the main architectural parameters at run-time

to ensure a high power efficiency.
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