
Improving the Programmability of GPU Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College voor Promoties, in het

openbaar te verdedigen op woensdag 30 april 2014 om 16:00 uur

door

Cedric Nugteren

geboren te Dordrecht

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.C.P.M. Backx
1e promotor: prof.dr. H. Corporaal
2e promotor: prof.dr.ir. H.E. Bal (Vrije Universiteit Amsterdam)
leden: prof.dr. P.H.J. Kelly (Imperial College London)

dr. A. Cohen (École Polytechnique)
dr.ir. A.L. Varbanescu (Universiteit van Amsterdam)
prof.dr.ir. G. de Haan
prof.dr. J.J. Lukkien

PhD thesis

Improving the

Programmability of GPU

Architectures

Doctorate committee:

prof.dr. H. Corporaal Eindhoven University of Technology, promotor
prof.dr.ir. H.E. Bal Vrije Universiteit Amsterdam, promotor
prof.dr.ir. A.C.P.M. Backx Eindhoven University of Technology, chairman
prof.dr. P.H.J. Kelly Imperial College London

dr. A. Cohen École Polytechnique
dr.ir. A.L. Varbanescu Universiteit van Amsterdam
prof.dr.ir. G. de Haan Eindhoven University of Technology
prof.dr. J.J. Lukkien Eindhoven University of Technology

This work was supported by the Dutch government in their Point-One research
program within the Morpheus project PNE101003 and carried out at the TU/e.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 295.

This PhD-trajectory included a 4-month HiPEAC sponsored internship at ARM.

© Cedric Nugteren 2014. All rights are reserved. Reproduction in whole or in
part is prohibited without the written consent of the copyright owner.

Printing: Printservice Technische Universiteit Eindhoven

A catalogue record is available from the Eindhoven University of Technology
Library. ISBN: 978-90-386-3599-6

Table of contents

Preface vii

1 Introduction 1
1.1 Using GPUs as accelerators . 2
1.2 Key aspects of the GPU architecture 3
1.3 Problem statement . 6
1.4 Contributions and thesis outline 7
1.5 Context of this work . 8

2 Motivation and outlook 9
2.1 Current trends . 9

2.1.1 The multi-core and many-core decade 10
2.1.2 The memory wall . 12
2.1.3 Implications to programmability 14

2.2 The prospect of dark silicon . 15
2.2.1 Dark and dim silicon . 15
2.2.2 Implications to computer architecture 16
2.2.3 Implications to programmability 18

2.3 Addressing programmability issues 19
2.3.1 Programming languages and frameworks 19
2.3.2 Architectural support for programmability 21
2.3.3 Iterative compilation . 22

2.4 Example: An adaptive GPU architecture 23
2.4.1 Parameter 1: The number of active threads 24
2.4.2 Parameter 2: Compute-memory ratio 25
2.4.3 Parameter 3: Core and warp sizing 27
2.4.4 Discussion . 29

2.5 Summary . 30

iii

3 Classifications of program code 31
3.1 A survey of algorithm classifications 34

3.1.1 High abstraction-level classifications 34
3.1.2 Algorithmic skeletons and related classifications 35
3.1.3 Directive-based classifications 36
3.1.4 Mathematical code representations 36
3.1.5 Evaluation of existing classifications 38

3.2 Algorithmic species . 40
3.2.1 Background: the polyhedral model 42
3.2.2 Polyhedral model-based algorithmic species 44
3.2.3 Automatic extraction of species 51
3.2.4 Evaluation and discussion 53
3.2.5 Conclusions . 58

3.3 Algorithmic species revisited . 59
3.3.1 Array reference characterisations 59
3.3.2 Array reference-based algorithmic species 62
3.3.3 Automatic extraction of species 66
3.3.4 Evaluation and discussion 67
3.3.5 Conclusions . 70

3.4 Finer-grained species . 70
3.4.1 Species+: a finer-grained classification 71
3.4.2 Evaluation and discussion 73
3.4.3 Conclusions . 76

4 Compilation using algorithmic skeletons 77
4.1 A survey of source-to-source compilers 78

4.1.1 Directives using hiCUDA 79
4.1.2 Algorithmic skeletons through SkePU 80
4.1.3 OpenACC directives with PGI Accelerator 81
4.1.4 Automatic compilation with Par4All and PPCG 82
4.1.5 Evaluation and discussion 82

4.2 A skeleton-based source-to-source compiler 83
4.2.1 Example skeletons . 85
4.2.2 Compiler optimisations . 87

4.3 Optimising host-accelerator data transfers 87
4.4 Kernel fusion . 89

4.4.1 Legality of fusion . 90
4.4.2 Performance considerations 92

4.5 Experimental results . 93
4.5.1 Evaluating compiler optimisations 94
4.5.2 Comparison of multiple targets 97
4.5.3 Comparison against the state-of-the-art 99

4.6 Discussion . 101

iv

5 Towards a programmable GPU architecture 105
5.1 A detailed GPU cache model . 106

5.1.1 Related work . 108
5.1.2 Background: reuse distance theory 109
5.1.3 Parallel execution model . 110
5.1.4 Memory latencies . 111
5.1.5 Cache associativity . 113
5.1.6 Miss-status holding-registers 114
5.1.7 Warp divergence . 115
5.1.8 Implementation of the model 116
5.1.9 Micro-benchmarks . 118
5.1.10 Verification of the model . 121
5.1.11 Example use: evaluating cache parameters 125
5.1.12 Summary and future work 125

5.2 A case for locality-aware thread scheduling 126
5.2.1 Related work . 127
5.2.2 Experimental setup . 127
5.2.3 The potential of thread scheduling 129
5.2.4 Detailed case studies . 133
5.2.5 Summary and future work 136

6 Conclusions and future work 137
6.1 Conclusions . 137
6.2 Future work . 139

Bibliography 141

Summary 155

Acknowledgements 157

About the author 159

v

vi

Preface

In front of you lies the pinnacle of a PhD-student’s hard work: the thesis. How-
ever, hidden from the reader’s eyes is the path that has led to this result. How was
the subject chosen? What was left out? What were the difficult parts? Which
part of the process could be improved? Prospective and current PhD-students
are encouraged to read this preface, as well as any others interested in the process
that led to this thesis.

In retrospect, the subject of this work was chosen in 2008 by browsing through
the first CUDA documents for my master thesis work. Because CUDA and accel-
erating scientific workloads on GPUs was new at the time, mapping application X
on GPU Y was still considered a scientific contribution. I therefore spent the first
months of my PhD accelerating a histogram computation on a GPU, which has
led to a publication at the GPGPU workshop. The results of this work encour-
aged me to investigate whether the GPU architecture could be improved. But
how to do any experiments without a simulator or model at hand? The lack of
a simulator forced me to search for a different research question, eventually lead-
ing to the question “how can a compiler improve the programmability of GPU
architectures?”.

My advisors pointed me to the work of Wouter Caarls, describing skeleton-
based compilation for embedded systems. Without a compiler-background and
without substantial literature research (don’t try this at home), I started the
development of my own skeleton-based compiler, focussing on GPUs instead. Al-
though this would eventually lead to bones (the compiler presented in chapter 4
of this thesis), a more thorough background study would have saved time and
work (including my ‘deprecated’ SAMOS and GPGPU papers). To increase the
scientific value of my compiler work, and motivated by the lack of structure in
skeleton-classes, I started developing a program code classification. This classifi-
cation is now known as algorithmic species, presented in chapter 3. This direction
of research was further motivated by a 1-day visit to Imperial College London and
by the engineering effort involved to further improve the bones compiler.

vii

As happened with many topics I have worked on during my PhD-thesis, I
moved bones and algorithmic species quickly to the background after I was en-
couraged to pursue new ideas. Especially after my 4-month internship with ARM,
I was motivated to work on other topics: creating a detailed cache model of a GPU
and addressing the problem of locality-aware thread scheduling. The results of
these topics have led to chapter 5, a loosely connected part of this thesis.

This illustrates the curvy road that was taken to arrive at this final result.
Consequently, as is the case with many PhD-theses, this work was mostly based
on publications in the last year of the PhD. Because of the variety of topics
investigated (from compilers to architecture to performance modelling), several
publications had to be left out. For example, this thesis does not include my
roofline model-based work nor the earlier mentioned work on histogram accelera-
tion. Overall, I am satisfied with the broad scope of topics I was able to work on
during my time as a PhD-student and the result it has led to. I hope that this
thesis will be a valuable read for anyone interested in GPUs, compilers, processor
architecture and performance modelling.

Name-tags collected at conferences, workshops and symposia.

viii

“Imagine a banana. Or anything curved. Actually, don’t,
cause it’s not curved or like a banana. Forget the banana!”

- The Doctor describing conceptual space (Doctor Who, 2011)

Chapter 1

Introduction

Digital technology has become a core part of today’s daily life. For example,
think of the ubiquity of personal devices such as smart-phones, e-readers, digital
cameras and televisions. As another example, consider the pervasiveness of deeply
embedded technology, such as electronics in cars, medical equipment and home
appliances. Or, from another perspective, think of our daily use of services such
as online encyclopaedias, social networks, digital music and on-line shopping. At
the heart of all these devices and applications is the microprocessor, a digital
system’s central processing unit (CPU). In 2014, the amount of microprocessors
has already superseded the world population, and is still growing: 2.6 billion
ARM-based microprocessors were shipped in the first quarter of 2013 alone1.

Users of microprocessor-based digital technology have become increasingly
aware of the power and energy usage of technology. As an example, consider
battery-powered devices such as smart-phones and tablets. When browsing shops
for a new smart-phone or tablet, the expected battery life is typically included
in a side-by-side comparison. Users even limit the use of such devices to pre-
serve battery life. On the other side of the power and energy spectrum is the
energy usage in data-centres (hosting our cloud services) and supercomputers.
Such systems draw several megawatts of power, requiring specialised energy in-
frastructures and cooling solutions. The energy cost for such systems has already
become the dominant operating expense, and is expected to grow further [60].

The power and energy issues of modern digital technology have a strong re-
lationship with the power and energy issues of the microprocessors themselves.
Throughout history, power and energy have not always been as important as they

1Source: ARM Holdings PLC results Q1 2013.

1

Chapter 1. Introduction

are now. Since the first microprocessors in the early 1970s, design has mostly
focused on performance improvements. Only recently have power and energy
come into play, rapidly gaining terrain over performance: since the early 2000s,
microprocessor design is driven by energy efficiency rather than performance [61].

The shift from performance to energy efficiency as the main metric of mi-
croprocessor design is directly related to Moore’s law and the end of Dennard
scaling. Dennard’s scaling theory [49] showed that by reducing the dimensions
and electrical characteristics of transistors (a chip’s building blocks), proportional
gains in terms of density, speed and energy efficiency are enabled. This is known
as process scaling. For the first 30 years of microprocessor design, process scaling
has resulted in a doubling of the amount of transistors (Moore’s law [103]) and
an increase of 40% in switching frequency every 18 months, while maintaining
constant power consumption. Because of physical limitations, Dennard’s scaling
theory has since 2004 failed to sustain the predicted exponential gains in frequency
and energy efficiency. Thus, although the amount of transistors is still growing,
increasing performance is not a simple matter of increasing the frequency any-
more. More importantly, an increased amount of transistors now also consumes
an increased amount of power, explaining the need for energy efficient designs.

The ever-increasing transistor count together with the limited operating fre-
quency has led to the design of multi-core processors. Rather than increasing the
frequency and designing larger microprocessors, the additional transistors given
by Moore’s law are used to duplicate the existing microprocessor core. This has
led to commodity multi-core processors with 2, 4, or 8 cores on a single chip.
Recently, specialised many-core processors with 256 or even more cores per chip
were introduced. On the other hand, the energy efficiency issues have led to the
design of specialised microprocessors, capable of operating efficiently only within
a limited domain. Such designs have been created traditionally for the embedded
systems community, but have gained increasing momentum in the general pur-
pose world [61]. Examples of specialised architectures are digital signal proces-
sors (DSPs), very-large instruction word (VLIW) processors, application-specific
instruction-set processors (ASIPs), and graphics processing units (GPUs).

GPUs have rapidly gained terrain since 2008 as energy efficient microproces-
sors applicable to a broad range of problems. However, developing efficient GPU
programs is not straightforward. The goal of this thesis is therefore to improve the
programmability of GPUs. This section will introduce the GPU and the problem
statement in detail, and will give an overview of the contributions of this thesis.

1.1 Using GPUs as accelerators

Graphics processing units (GPUs) are an example of specialised microprocessors
or ‘accelerators’: they are designed specifically to accelerate the rendering of 2D
and 3D-graphics. The GPU’s primary market is the game industry, enabling

2

1.2. Key aspects of the GPU architecture

games to render increasingly complex 3D-scenes every year. Although the first
3D-graphics accelerators were introduced in the 1990s, the term ‘GPU’ was not
used until NVIDIA’s introduction of the GeForce 256 in 1999 [95]. This was the
first GPU to include a hardware transform and lighting (T&L) engine, setting the
trend for GPUs to take over almost all of the graphics work from the system’s
main microprocessor (the CPU). The introduction of the GeForce 3 in 2001 marks
the next step in the evolution: GPUs were from then on able to run small custom
programs known as shaders on a 3D scene’s vertices and pixels. Eventually,
starting from NVIDIA’s GeForce 8 series in 2006, the logic executing these vertex
shaders and pixel shaders was unified [95]. This resulted in the GPU’s architecture
as we know it today: many small programmable units executing small programs
(the shaders) independently to alter vertex or pixel data2.

Along with the unification of the two types of shaders, NVIDIA introduced
the CUDA framework [95]. With this framework, the GPU’s shaders can be
programmed with non-graphics programs. This allows GPUs to accelerate other
types of applications, so-called compute applications or GPGPU3 workloads. Be-
cause of the specialised, domain-specific architecture of the GPU, many appli-
cations will perform poorly. Still, a significant fraction of the most demanding
parts of applications can benefit from GPUs [66]. Example domains include lin-
ear algebra (e.g. matrix-multiplication, Cholesky decomposition) [71], image pro-
cessing (e.g. edge detection, histogram equalisation) [101], computational biology
(e.g. genomics, neuroscience) [141], statistics (cluster analysis, support vector ma-
chines) [142], and physics (e.g. fluid dynamics, turbulence simulation) [30]. These
domains all have a high resemblance to graphics processing: they perform a large
amount of mostly independent and similar small tasks on large data-structures.
In other words, they have a high data-level parallelism.

Now, several years after the introduction of CUDA, using GPUs for compute
applications is widespread. It has even become a market to consider for GPU
designers, as more recent architectures are no longer designed with graphics as
a single application in mind. For example, NVIDIA’s latest GPUs (codenamed
Fermi and Kepler) incorporate special features only useful for compute appli-
cations, such as scratchpad memories and dynamic parallelism [110]. Even low-
power mobile GPUs such as the ARM Mali have recently been re-designed to
support compute applications, demonstrating the importance of GPU-compute.

1.2 Key aspects of the GPU architecture

The focus of this thesis lies on the programmability of GPUs for compute appli-
cations. This topic is introduced in this section by discussing the key aspects of

2ATI/AMD has followed NVIDIA’s evolution of T&L, shaders and a unified architecture.
3Although misleading, GPGPU is an acronym for general purpose computing on GPUs.

3

Chapter 1. Introduction

the GPU architecture4, i.e. the main architectural features [65, 95] that make
the GPU a specialised architecture: 1) the fine-grained multi-threading, 2) the
single-instruction multiple-thread (SIMT) execution model, 3) the abundance of
parallelism, and 4) the high bandwidth to memory.

Fine-grained multi-threading

Programs executing on microprocessors consist of a sequence of instructions to
perform. Some instructions have a short latency (e.g. an addition) and some
a long latency (e.g. a memory access). In case there are dependences between
instructions, these latencies directly affect the total execution time of a program in
a basic microprocessor architecture. Therefore, most advanced CPUs are designed
to reduce the latency of instructions, for example through techniques such as
instruction level parallelism (ILP), branch prediction, out-of-order execution, or
the use of cache memories.

Because of highly parallel target workloads, a GPU provides a radically dif-
ferent solution: after issuing a (long or short latency) instruction, it switches to
another stream of instructions. These streams are named threads; continuously
switching between them results in fine-grained multi-threading. To maintain per-
formance while switching threads, GPUs are equipped with a large register-file
that stores the context of many GPU threads, enabling context-switching at no
cost. Fine-grained multi-threading simplifies a core significantly (saving chip area
and power), because techniques as used in CPUs to reduce the instruction latency
are no longer necessary (assuming a sufficient number of independent threads).

Single-instruction multiple-thread execution model

A significant fraction of a microprocessor’s chip area and power are spent merely to
support the execution of instructions. Even very basic microprocessors have over-
heads such as fetching and decoding instructions, and controlling the execution
pipeline. To increase the ratio of chip area and power spent on the computations
themselves, microprocessors can be equipped with multiple processing elements.
This allows a single instruction to execute multiple times in parallel on different
data, creating a single-instruction multiple-data (SIMD) architecture. For exam-
ple, the addition of two vectors of 8 elements can be performed on a 4-wide SIMD
architecture with 2 vector-add instructions as opposed to 8 scalar-adds.

Similar to SIMD architectures, a GPU is also equipped with multiple process-
ing elements. However, they are programmed in a single-instruction multiple-
thread (SIMT) fashion: threads are used instead of special vector instructions.
Because the majority of the pipeline is still only able to handle a single instruction,
threads executing on different processing elements at the same time must perform
the same instruction. Therefore, threads are grouped into units of scheduling that

4The introduction discusses an NVIDIA/AMD-like desktop GPU architecture. Other GPUs
might not feature all the discussed aspects.

4

1.2. Key aspects of the GPU architecture

are executed in lock-step: warps in NVIDIA terminology or wavefronts in AMD
terminology. The SIMT model can lead to underutilisation of the processing el-
ements when threads in a warp encounter control flow divergence, for example
when an if-statement is only taken by a subset of the threads.

Parallelism

Since the GPU cores are relatively simple (e.g. no out-of-order execution), a chip
is typically equipped with multiple SIMT cores (in the range of 1-32 for current
GPUs). The thread execution model is extended to support multiple cores, but
with a limitation: threads executing on different cores do not have the ability
to synchronise their execution nor to share data through a local memory. GPU
programs (named kernels) therefore require a high degree of parallelism: threads
must be independent of each other in the sense that they can be executed in any
order without modifying the semantics of the program. For graphics processing
this is a given: vertices and pixels of a frame can be computed in parallel.

High memory bandwidth

The main data memory of most microprocessors is located on a different chip:
off-chip from the microprocessor’s point of view. The latency to access this data
is therefore typically one to two orders of magnitude higher than performing
computations. Off-chip memories (e.g. SDRAMs such as DDR3) are therefore
engineered to minimise latency. As discussed before, fine-grained multi-threading
makes GPUs less susceptible to memory latencies. Therefore, GPUs do not require
the minimised latency of conventional SDRAMs: the design of GPU memories
(e.g. GDDR5) is not driven by latency minimisation. Instead, the design is driven
by frequency maximisation, aiming for a high memory bandwidth and throughput.
Still, GPUs might include on-chip memories to reduce traffic to off-chip memories
rather than to reduce latencies. On-chip memories in GPUs come in two flavours:
programmer-managed (scratchpad) and hardware-managed memory (cache).

Example GPU and kernel execution

To complete the background on GPU architecture, an abstract view of an example
GPU (figure 1.1) and the specifications of a real GPU are given. The figure shows
a 2-core GPU with a per-core local memory (cache and scratchpad) and a second
level (L2) shared cache. Each core has a single instruction fetch and decode unit,
a single thread issue and schedule unit, 8 processing elements, and several load-
store units (LSUs) and special function units (SFUs). A large per-core register-file
can store the context of many threads, enabling fine-grained multi-threading.

As an example, consider the NVIDIA GeForce GTX580, a 2011 high-end
Fermi desktop GPU. It has 16 cores, each with 32 processing elements running at
1.5GHz. The off-chip GDDR5 SDRAM is clocked at 1.0GHz and has a maximum
throughput of 192GB/s through a quad-pumped 384-bits bus. The GPU includes

5

Chapter 1. Introduction

instruction cache

instruction fetch/decode

thread issue/scheduler

PE

PE

PE

PE

PE

PE

PE

PE

cache or scratchpad

register file

LSU LSU

SFU SFU

GPU core #2

GPU SDRAM (off-chip)

L
2

 c
a

c
h

e

instruction cache

instruction fetch/decode

thread issue/scheduler

PE

PE

PE

PE

PE

PE

PE

PE

cache or scratchpad

register file

LSU LSU

SFU SFU

GPU core #1

PCI-Express bus

CPU
(host)

CPU
SDRAM

Figure 1.1: Example GPU with 2 cores and 16 processing elements (abbreviated as PE). It
can for example be connected to a host CPU through a PCI-Express bus.

a 768KB L2 cache and a 64KB configurable on-chip memory per core. Its peak
power consumption is 244W. The GPU uses a host CPU as a control processor.

Consider the case where 256K integers need to be copied from one array to
another. A GPU kernel for this example could assign each thread with reading an
integer from the input array and writing it to the output array (see figure 2.6 for
a similar example). The programmer could divide this workload for example in
256 blocks of 1024 threads (see also section 2.3.1). Each core would be assigned
a single block at first. These 1024 threads will execute in a fine-grained multi-
threading fashion as warps (e.g. 32 threads) on the processing elements of a
GPU’s core. After a core completes a block entirely, it will proceed to the next.

1.3 Problem statement

Since multi-core processors and specialised architectures such as the GPU are ex-
pected to continue the exponential growth of performance and energy efficiency,
we need to ensure that all features of the architecture are fully exploited. As
a simple example, consider the parallelism of an application. If the application
contains a sequential part that accounts for 25% of the execution time, it be-
comes impossible to reach a speed-up higher than a factor 4, even with an infinite
amount of cores (Amdahl’s law). Even if the application has no sequential part,
it remains the task of the programmer to identify the parallel parts and to con-
struct an efficient implementation. In general, programming has become increas-
ingly challenging over the past decade due to the heterogeneity and parallelism
in processors [21, 61]. Moreover, implementing efficient code has also become
increasingly important due to the end of Dennard scaling: the continuation of
Moore’s law will no longer lead to ‘free’ performance gains [130].

In particular, developing efficient GPU programs is not straightforward [21,
61]. Programmers are faced with among others new programming languages,

6

1.4. Contributions and thesis outline

multiple levels of parallelism, and a multi-level memory hierarchy. For example,
the programmer has to organise threads and data in such a way that data is
accessed in a memory and cache-friendly manner. Alternatively, the programmer
might decide to create local data copies in the on-chip scratchpad memories, which
requires explicit instructions to be distributed as work over the threads. GPU
programmers face many more such issues, illustrated by the relatively large design
space of a straightforward histogram computation [9]. To design efficient GPU
programs, programmers are in many cases required to have detailed architectural
and application knowledge, and need to invest a significant amount of time.

The goal of this thesis is to improve the programmability of GPUs by both
1) generating efficient GPU source code automatically using a source-to-source
compiler, and 2) by automatically ordering threads to maximise data-locality. We
define programmability to be inversely proportional with the effort required by a
programmer to implement an efficient solution. Several metrics are intertwined
with programmability (see also figure 1.2): 1) performance: the speed or energy
efficiency of a program, 2) portability : the generality in terms of correctness and
performance across different microprocessors, and 3) productivity : the effort and
knowledge required to design and maintain program code.

programmability

portability productivity

- maintainability

- code size

- code complexity

- required knowledge

- debugability

performance

- resource utilisation

- scalability

- energy efficiency

- parallelism

- common language

- correctness
 (across architectures)

- performance
 (across architectures)

Figure 1.2: Programmability and related metrics: portability, productivity and performance.

1.4 Contributions and thesis outline

This thesis focusses on addressing the programmability of GPUs and is based on
the publications [1, 2, 3, 4, 5, 6, 7]. Although the focus of this thesis lies on GPUs,
we underline that many contributions are also applicable to other processors,
in particular those with a parallel programming model. This thesis makes the
following main contributions:

• Chapter 2 motivates the thesis by discussing current microprocessor design
trends and future trends. These trends are illustrated with an example
‘future’ GPU [1]. Furthermore, approaches to address the programmability
of GPUs are discussed, including an overview of programming models.

7

Chapter 1. Introduction

• To be able to reason efficiently about a wide variety of applications, chap-
ter 3 discusses classifications of program code. First, a survey of existing
classifications is performed. Next, a new classification named ‘algorithmic
species’ is presented, classifying loop nests based on memory access pat-
terns. Two versions of algorithmic species are presented: one based on the
polyhedral model [5], and one based on array reference characterisations [4].

• Chapter 4 discusses code generation. To improve the programmability of
GPUs, a source-to-source compiler is presented that transforms sequential
code into efficient GPU code [3]. The compiler uses algorithmic skeletons
as pre-optimised templates for specific classes of program code, correspond-
ing to algorithmic species as introduced in chapter 3. Furthermore, the
compiler’s abilities to optimise host-accelerator data transfers [6] and to
perform kernel fusion are discussed. Additionally, a comparison between
several compiler approaches is presented.

• Chapter 5 motivates changing the GPU’s thread scheduling mechanism to
improve programmability by automatically maximising data-locality. To
obtain insight into cache behaviour, a detailed model of a GPU’s cache is
introduced first [2]. Furthermore, a case for locality-aware thread scheduling
is made, evaluating among others cache performance [7].

This thesis does not contain a separate related work section: it is discussed per
chapter. Chapter 6 concludes the thesis and presents proposals for future work.

1.5 Context of this work

This work is performed within the context of the Morpheus project, a national
Point-One programme project. The project focuses on vital sign monitoring us-
ing (non-intrusive) cameras for both baby’s at home and neonatals in hospitals.
Vital sign monitoring includes respiration-rate and heart-rate monitoring (using
photoplethysmography), and posture and sleep analysis. The project’s aim is to
develop advanced vital sign monitoring ‘vision’ algorithms and to map them onto
an energy efficient platform. A GPU is chosen to accelerate the highly parallel
vision algorithms and to achieve this energy efficiency.

Although the GPU-acceleration part of the Morpheus project seems to be a
one-time effort, it can in fact benefit from a GPU with improved programmability
(e.g. through source-to-source compilation). First of all, GPU code has to be
developed for multiple algorithms. Furthermore, the code has to be rewritten
multiple times because the algorithms themselves are still in development during
the project. Finally, a more general approach allows this work to be used beyond
the Morpheus project, improving not just the energy efficiency of a specific set of
algorithms, but the programmability of GPUs in general.

8

“Never underestimate the bandwidth of a station wagon
full of tapes hurtling down the highway.”

- Andrew S. Tanenbaum (1996)

Chapter 2

Motivation and outlook

If we plan to spend time and money to improve the insulation of our house to
protect against the cold winter, we first need to make sure it is not already well
insulated. Moreover, we need to make sure insulation is the solution we want: we
could alternatively invest in warmer clothes to achieve the same goal. And, are
we really sure that the cold winter is coming?

It should be clear by now that this thesis does not cover housing insulation,
but rather aims to improve the programmability of GPUs. Regardless of the
change of topic, our motivation follows the same line of reasoning. Therefore,
this chapter investigates: 1) necessity (do we need to protect ourselves against
the cold), 2) opportunity (can we improve our insulation), and 3) the alternatives
(should we buy warmer clothes instead).

Because the programmability issues with current GPUs are well discussed in
the literature [61], they are only briefly discussed. This chapter rather focuses
on the programmability issues of future architectures. Although we cannot be
certain about the future of microprocessor design and programming, it is possible
to present an outlook by analysing past trends and predictions. Such an analysis
of trends and predictions is presented in sections 2.1 and 2.2, and illustrated
by discussing an example ‘future’ GPU in section 2.4. Furthermore, section 2.3
discusses alternatives to the compiler-approach presented in this thesis.

2.1 Current trends

Chapter 1 already discussed the exponential transistor growth (Moore’s law) and
the recent diminishing returns in frequency and energy consumption (the end

9

Chapter 2. Motivation and outlook

of Dennard scaling). This section takes a closer look at the current trends of
multi-core, many-core, and the memory wall.

Throughout this section, two sets of historical data on microprocessors that
have been constructed using multiple sources are presented. The first set contains
technical specifications of more than 1400 Intel microprocessors ranging all the
way back to the release of the 80386 in 1985. The data was collected from Intel’s
ARK database [78] and extended with information fromWikipedia [143]. The sec-
ond set contains the specifications of more than 500 of NVIDIA’s 3D-accelerators
(1990-1999) and GPUs (1999-2013). This data was taken from TechPowerUp’s
GPU database [134] and the GPU hardware museum [74].

2.1.1 The multi-core and many-core decade

In 2005, Herb Sutter authored ‘The free lunch is over’ [130]. Although this may
sound like a catering announcement with bad news for students, it is in fact a
study on the implications of the end of Dennard scaling. Based on historical CPU
data (1970-2004), Sutter argued that CPU frequency and performance per clock
will not increase as much as they did before. The free ‘performance lunch’ for
sequential applications is over: newer microprocessors will no longer trivially im-
prove performance of existing applications. Sutter concluded his work with four
implications for software developers: 1) applications will have to become concur-
rent to benefit from advances in microprocessor technology (i.e. parallelism), 2)
applications are more likely to become CPU-bound rather than memory-bound
in the future, 3) creating efficient programs will become increasingly important,
and 4) programming languages will be forced to deal with concurrency.

Several years later, it becomes clear that Sutter’s free lunch is indeed over. As
of 2013, many desktop, laptop, and even smart-phone microprocessors have two or
more processor cores. In a recent article, David Patterson reflects on the problems
multi-cores have brought along for programmers [111]. He foresees three possible
scenarios for 2020: 1) limit the core count on multi-cores to maintain programmer
productivity and core utilisation, 2) only a few types of applications will continue
to benefit from core scaling, or 3) advances in compilers or programming languages
will allow trivial scaling of applications onto multi-cores. Although Patterson
roots for the latter scenario, he is afraid it is not the most likely.

In other work, Shekhar Borkar proposes to design microprocessors with hun-
dreds of small cores: a many-core processor [35]. The many-core design is mo-
tivated by Pollack’s rule: performance increase of a single core is roughly pro-
portional to the square root of its complexity [35]. Therefore, spending area and
power on many small cores is more energy efficient for parallelisable applications.
Examples of recently introduced many-cores are the Kalray MPPA (with 256
cores) and the Intel Xeon Phi (with 60 cores).

To illustrate the current trends of technology scaling, our own data is pre-
sented in figures 2.1 and 2.2. These figures plot four properties of each of the
microprocessors (CPUs and GPUs) in our database on a single logarithmic axis:

10

2.1. Current trends

1985 1990 1995 2000 2005 2010

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

Year of introduction

●●
● ●●

●●
●

●●
● ●●

●
●

● ●●●●●

●
●●

●●●
●

●
●●●● ●●●● ●●●● ●
●

●
●●

● ●
● ●

●
●●
●

● ●●●●●
●

●
●

●

● ●●●●●

●
●

●
●●● ●●

●●●●●●●

●

●

●● ●●●

●●●●
●●●●●

●●●●●●●●●
●●●●●●● ●●●●
● ●●

●●●
●●●●

●

●

●

●

●

●

●

●●

●●

●●●●●●●●●
●

●●

●●● ●●●

●● ●●●●●● ●
● ●●

●
●●
●

●●● ●●●●
●●● ●●●

● ● ●●●

●●

●

●

●●

●●●●●

●●● ●

●●● ●●

●

●●

●

●

●●●● ●●● ●● ●

●

●

●●●●●

●

●●●●●

●

●
●●
●
●●●
●
●

●

●

●

●
●

●●●●●●●
●

●●

●●●●●●●

●

● ●●
●

●●

●

●● ●● ●●●●● ●●●●●●● ●●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●●
●●

●●

●

●●● ● ●●●● ●●● ●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●

●

●●●●●●●●● ●●

●

●

●●●

●●●●●●●●●●●

●●

●

●●

●

●●

●●●● ●●●●● ●●

●●

● ●●●

●

●

●●● ●●●

●●●●●●●●●●

●

●●● ●

●

●●●●●

●●●●●

●● ●●

●●●●●●●● ● ●●●

●●●● ●

●●●●●●●●

●

●●

●

●●

●●● ●● ●●●●●● ●●● ●● ●●
●

●●●● ●

●

●●●● ●

●● ●● ●●● ●●● ●● ●

●● ●

● ●●

● ●

●● ●●

●
●●
●●●

●

●● ●

●●

●

●●
●

●●
●

●● ●

●●

●● ●●● ●●● ●

●●●● ●●●● ●●●● ●●●●●●●●●●

●
● ●●●●●●

●

●●●

●●● ●●
●

●●●
●●●●●●

●●● ●●●●●● ●● ●
● ●●● ●●● ●●● ●

● ● ●

●
●●

●●

●●●● ●
●

●●●●

●● ●●● ●●●

●

●

●● ●

● ●

●

●

●

●●

●●
●●●●●●
●●●●●●●

●●●●

●●●●●●●●

●

●

●●●●●●●●●

●●●

●

●●

●●●●●●●●●●
●

●●●●●●●●●● ●

●●●

●●

●

●●●●

●

●

●●
●

●●

●

●

●

● ●●

●

●

●●●●●●●

●●●●●● ●● ●●●●●●●●● ●●● ●●● ●●●●●●●●●

●●●●●●●●●●●

●

●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●●●●●

●

●●

●●●

●●●

●

●●●●●● ●● ●● ●●●● ●●●●● ●●● ●●●
●

●
● ●

●● ●●

●●● ●● ●●●● ●

●

●● ● ●

●

●
●

●
●●●●
● ●● ●●●●● ●●●

●● ●●●●●
●●●●●● ●●● ●
●

●
●●●●

●
●

●●●●● ●●● ●

●●●●●● ●●● ●●● ●●●
●

●●

●

●

● ●●●

● ●

●●

●

●

●● ●●● ●● ●●

●●●●●

●●●

●● ●●

●

●

●●●●●●

●

●

●

●● ● ●

●

●

●

●●

●●●●●

●●●

●

● ● ●●●●●●●●● ●●●

●
●
●●

●
●

●●●

●●●● ●●

● ● ● ●● ●● ●

● ●
● ● ●

●●● ●
●●●● ●●● ●●

●● ● ●●

●● ●● ●● ● ●● ● ●●● ●

●

●●●●●
●

●●

●●● ●
●

●●●
●● ●●●●● ●● ●● ●●

●
●

●
●

●●
● ●● ●●

●● ●● ●●●●● ● ●●
● ● ●●●●●●

●

● ●●●

●

●

●
●
●●●●●● ●

●

●
●●

●

●●●
●●●●

●●

●●●●●●●

●

●

●●

●

●●● ●●●

●

● ●●●●● ●●●●●

●

●

●

●

●

●
●

●

●●

●●●
●●●●●● ●●●

●
●● ●●●

●●
●●

●●● ●

● ●●●●●

●

●
● ●●●

●●●●
●

●●

●
●

●
●● ●●

●● ●●

●

●

●

●

●

●

●

●

●●●

● ●

●●

●●

●

●●●

●●

●●● ●

● ●

●

●●●●●
●

●

●●
●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●
●

●
●●
●●●
●

●●
●

●●
●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●
●●
●

●
●
●●

●
●
●●

● ●●
●
●●●

●
● ●

●●
●●●

●
●

●●●●

●

●●● ● ●●
●● ●

●
● ●

●● ●
● ●

●●●

●●●●

●
●

●
●

●●

●

●

●

●

● ●

●
●

●●●

●●●●●●●

●

●

●

●

●

●●

●●
●
●●

●

● ●●

●
●

●

●●

●●
●
●●
●
●

●●
●
●
●●
●
●●
●

●

●●

●

●

●●

●

●

●●● ●●

●●

● ●●●
●

●
●●● ●●
●

●●
●●●●●●●
●

●

●●

●

●

●●

●

●

●

●

●

●
●●●
●●

●
●●
●●●

●

●●
●

●

●●●●●●●●

●

●●
●

●

●●●
●

●●

●●

●●

●●

●

●
●
●
●

●
●●

●

●●●

●●

●

●

●

●

●●
●

●●
●●●

●●

●
●●
●●

●●●●
●●

●

●

●●

●

●

●
●●●●●●● ● ●●●

●●●● ●
●●●●
●

●

●
●

●
●●

●
●●

●●● ●● ●●●●●● ●●● ●● ●
●

●
●●●
● ●●

●●●● ●●●
●

●
●

●●
●

●
●

●
● ●

●● ●●
●
●

● ●
●● ●●

●

●●

●

●●●

●

●
●

●●

●

●●

●

●●

●

●● ●

●●

●

● ●

●

● ●

●● ●

●●●

●

●

●

●● ●

●●

● ●

●●

●

●
●●●

●●

●

●

●●
●
●
●●

●

●

●

●●

● ●●●●●● ●

●

●●
●●● ●●●●● ●●●●●●

●
●
● ●●●●
●● ●● ●

● ●●● ●●
●

●
●● ●

● ● ●●
●●●●
●●●●

●
●●
●●

●● ●●
●

●
●●

●

● ●●
●●

●
●

●
●

●●●●
●●●
●●●

●●●●●
●

●

●●●●

●●●●
●●●●

●
●

●●●
●●●
●
●●

●●●

●

●

●

●●
●
●●●●

●
●

● ●

●●●●●●●
●
●

● ●
●
●●●
●

●●●
●●

●

●●

●

● ●

●

●
●●

●
●

●
●

●

●
●
●●●●
●

●
●
●
●
●
● ●● ●●●●●●
●●● ●●● ●

●
●

●●

●
●●●●●

●

●●●●●●●
●●●●

●

●
●●●
●

●
●
●

●● ●
●●●●●●●
●
●●

●
●

●
●

● ●●●●●●

●

●●●
●
●
●
●
●

●●●●

●

●

●●
●●●●●●●
●
●●●
●●●●●●

●
●
●●
●
●●

●

●

●
●●●●●
●●●
●

●
●●●
●
●
●
●
●
●●
●
●●●●

●●●
●●
●●●
●

●●●●●

●

●●●●
●
●

●●●●●● ●● ●● ●●●● ●●●●● ●●● ●●● ●● ●
●

●● ●●●●● ●●
●●●● ●

●
●● ● ●

●

● ●
● ●●●●

● ●
● ●●●●● ●●●

●● ●●●●●
●
●●●●
● ●●
● ●
●

●
●●●●●●

●●●●

●

●●●

●

●●●●
●

●●
●

●
● ●●

●
●

●
●

●

●

● ●●●
● ● ●● ●

●

●
●

●

● ●● ●

●

●●●●

●

●

●

●● ●

●

●

●

●
●

●●

●

●●●●●

●

●

● ●

●● ● ●

●
●

●

●

●●

●
●●

●●

●

●●

●

●●● ●

●●

●●●●●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●
●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●
●● ●

●

●

●

●

●●

●

●●

●●

●

●●
●
●
●

●

●●
●● ●

●

●
● ●

●●●
●

●

●
●

●
● ●

●

●●
● ●

●

●

●

Transistors (x1000)

Frequency (MHz)

TDP (W)

Cores

Figure 2.1: Historical data on 1403 Intel microprocessors showing the scaling of a chip’s
transistors, clock frequency, power dissipation, and core count.

1995 2000 2005 2010

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

Year of introduction

● ●

●● ●

●

●

●

●

●

●

●

●

●●

●● ●●●

●
●

●

●●
●
●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●●

●●

●

●

●

●●

●●
●
●
●

●●

●●

●

●

●

●

●●

●

●●
●

●
●

●●

●●●●●
●

●●

●
●

●

●
●
●
●
●

●

●●

●
●
●
●●
●●

●

●

●●●●

●●●

●

●●
●
●
●
●

●●

●●●

●●●
●
●●●●

●●

●●

●

●

●●●●
●●●●●

●

●

●●

●●
●●

●

●
●
●●

●
●●●

●●●●
●●●●
●●●

●●●●

●
●

●

●

●

●
●●
●●●

●●●●●

●
●●●

●●

●●●
●
●

●

●●

●●

●●●
●

●

●●

●

●

●

●

●●●●

●●

●

●
●

●

●

●●●

●●

●●●●●

●

●●●

●

●●
●●
●
●●●●

●
●●

●
●●●●●●●●●

●●

●●

●●

●

●●

●●●●●

●

●●
●●●●

●●

●●●●●●●●

●

●●●

●●●●●

● ●

●● ●

●

●

●

●

●

●

●

●

●●

●● ●●●

●
●

●

●

●●●
●

●●●

●●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●●

●

●●●●
●●

●●

●●

●●

●●

●

●

●●●

●●●●

●●●●

●

●●●●

●●●

●
●

●●
●

●●●●●

●●
●●●

●
●

●●●●
●●
●●

●●
●●

●
●●●

●
●●●

●●●
●
●

●
●
●
●●●

●
●●

●●

●●
●●●●
●●●

●
●●

●●
●

●

●

●●●
●●●●●●

●●●●

●
●

●

●

●●●●●●●●●●

●●

●
●●●●●●

●●

●●●●

●
●

●
● ● ●

●●●●
●

●

●

●

●

●● ●●●

●●●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●●●

●

●
●

●
●
●
●

●

●

●●
●
●

●●●●●

●
●

●

●
●

●

●●

●
●
●
●

●●●●

●

●

●●
●

●

●●

●●
●
●

●

●●
●

●
●
●

●●
●
●

●

●●
●

●
●

●●●

●

●●●●

●●

●

●●

●●
●●

●●

●●

●●
●
●
●
●●

●

●
●●
●
●

●
●●

●

●●●●

●
●
●

●

●
●

●
●●●

●

●●

●●

●

●

●
●
●
●
●●●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●●

●●

●

●
●

●

●●●
●

●●

●

●
●
●

●●●

●

●
●
●●●

●

●

●

●

●

●●

●
●

●
● ● ●

●●●●
●

●

●

●

●

●● ●●●

●●●

●

●

●
●●

●

●●●●●●●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●●●●●●
●

●●
●
●

●●●●

●●

●
●

●

●

●

●●

●●●●●

●
●●

●

●

●●
●●●
●
●

●

●●

●

●

●●●●

●●
●●
●

●●●●●●

●●
●
●●

●●
●

●●

●

●

●

●●

●
●●
●●●

●

●

●
●●

●

●
●●

●
●

●
●

●●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●

●

Transistors (x1000)

Frequency (MHz)

TDP (W)

Shaders/PEs

Figure 2.2: Historical data on 566 NVIDIA GPUs showing the scaling of a chip’s transistors,
clock frequency, power dissipation, and processing element count.

11

Chapter 2. Motivation and outlook

1) the number of transistors, 2) the nominal clock frequency, 3) the maximal
power dissipation or thermal design power (TDP), and 4) the number of cores
(for CPUs), processing elements or vertex and pixel shaders (for GPUs).

Figure 2.1 shows data on Intel CPUs. From the figure, we can clearly observe
the continuation of Moore’s law: the number of transistors grows exponentially.
The end of the free performance lunch can also be identified: power dissipation
reached its maximum at around 2004, ending the exponential growth of clock
frequency. We also see industry’s response: the number of cores started increasing
from around 2005. Additionally, we observe that designs have started covering
wider ranges. For example, in 2010-2011 Intel released CPUs with 100M to 2B
transistors, 600MHz to 3.6GHz, 1 to 10 cores, and a TDP of 3W to 185W.

Figure 2.2 shows the scaling trends of NVIDIA 3D-accelerators and GPUs
starting at 1995. Similar to the CPU trends, we also observe Moore’s law and the
end of frequency and TDP scaling. Additionally, a sudden clock frequency jump
in 2007 can be seen. The jump is a result of the G80 design, introducing two clock
domains: a high-frequency domain for the PEs and a half-frequency domain for
the remainder. Finally, we note the proportional growth of the number of cores
with the number of transistors: Pollack’s rule and highly-parallel workloads have
continued to motivate simple PE designs.

2.1.2 The memory wall

Still, there are other trends to consider besides multi-core and many-core. In
1995, Wulf and McKee observed the ‘memory wall ’: the growing disparity be-
tween the microprocessor’s performance and the off-chip memory bandwidth and
latency [148]. Both microprocessors and off-chip memories follow an exponen-
tial trend, but the exponent for memories is significantly lower. This results in
an exponentially growing gap between both. So, even more than utilising the
microprocessor efficiently, it becomes increasingly important to use the memory
efficiently: data re-use should be exploited as much as possible, for example by
caching in local on-chip memories.

To illustrate the memory wall and verify Wulf and McKee’s predictions, our
own microprocessor performance and memory bandwidth data is presented in
figures 2.3 and 2.4. Because our database does not contain performance data
for a single benchmark, microprocessor performance is estimated. This estimate
assumes an instruction throughput of 1 instruction per cycle (IPC) per thread.
In reality, the IPC can be higher or lower, depending for example on the ILP and
the cache configuration. For CPUs, the clock frequency is multiplied with the
number of cores to obtain an estimate of peak performance for scalar instructions.
This number is further multiplied with the SIMD-width to obtain an estimate of
the peak performance for vector instructions. For GPUs, an estimate of the
peak performance is computed by multiplying the number of processing elements
with the clock frequency. To obtain the memory bandwidth, the memory’s clock
frequency is multiplied with the bus width and the appropriate SDRAM scaling

12

2.1. Current trends

1985 1990 1995 2000 2005 2010

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

Year of introduction

●● ● ●●
●● ●

●● ● ●●
● ●● ●●●●

●
●
●●

●●●

●

●

●
●
●

●
●

●
●
●●

●
●

●
●● ●●

●
●

● ●●●
● ●● ●● ●● ●

●
●●●●

● ● ●●●

● ●●●●●
● ●● ●●●

●
● ●

●

●●●●●

●
●

●
● ●●●

●●●●●●
●●●●

●●
●●●● ●●●
●

● ●●●
●
●

●●●●

● ●●
●●
●● ●
●

●
●
●
●
●
●

●●
●
●
●

●
●●

●●● ●●●●
●●

●●●
● ●

●
●●●

●
●
●

●●
● ●

●●
●●

●

●

●●●

● ●
●

●●

●●
●● ●●

●●●●
● ●●● ●●

●●
●●

● ●●

●

●
●●●● ●●● ●

● ●

●

●
●●●
●
●
●

●
●●

●●

●
●

●
●
●●●
●
●
●●●●

●●
●
●●●●●●●●●
●

●●
●●
●●

●

●

●●●
●●

●

●
●

●

● ●●●●
● ●●●●
●●●

●●●
●

● ●●

●
●
●●

●

● ●
●●●
●
●●●

●
●●●

●

●●● ● ●●●● ●●

● ●
●● ●● ●

●●●●●●
●
●
●

●
●●●●

●
●
●

● ●

●
●

●●● ●

●●●

●●●●
●
●
●

●
●●

●●●●●
●

● ●●

●
●

●●●

●●●
●●●●

●●●
●

●●

●
●●
●●

●●

●
●
●●
●
●

●●● ●●
●●● ●●●

●
●
●●●●●

●●
●●●●●●
●●

●●
●

●

●
●

●

●●
●●●
●●●

●●●
●

●●●

●

●●●●●●●●●

●●
●● ●●●●

●●
●●

●●●●
●
●

●●●

●
●●

●

●●

●
●●●
●

●●●

● ●

●

●●●
●●

●●●

●

●

●●●●
●●
●
●
●●●

●●

●●

●●●

●

● ●●● ●●●● ●
●●●
●●

●●
●

●

●
●

●
●

●

●●● ●● ●●●●●
●

●
●● ●● ●● ●

●●●
● ●●●●
●● ●●●

●
●

●
●●

●
●
●

●
● ●

●● ●● ●●
● ●●● ●●

●

●●
●

●●●

●

●

●●●●●●● ●●●
●● ●●● ●

● ●
●● ●●● ●●●●● ●●●● ●

●●

● ●

●●
●

●●●
●

●

●
●

●

●
● ●

●●●●
●

●

●

● ● ●●●
●●●

●
●
●●

●●● ●● ●●●● ●

●

●●

●● ●●
● ●●●●●● ●● ●

● ●●● ●●● ●●● ●● ●
●●●●●

●
●●●● ●●

●
●●● ●● ●●● ●●●

●

● ●● ●

● ●
● ●

●

●●
●●
●●●
●●●

●●●●
●●●

●●
●● ●●●

●●●●
●

●
●

●●●●
●●
●
●●

●
●
●

●

●● ●●
●●
●●●
●●
●

●
●●
●●●
●●
●●● ●

●
●●

●●●●●●●

●

●

●●
●

●●

●
●●

●
●
●

●

●●
●
●

●
●●

●

●

●●
●

●

● ●

● ●
●●●●●●
●● ●●
● ●●●

●●●
●

●●●●
●

●

●● ●

●
●●●●●●●●

●

●
●

●
●●

●●●●
●
●●●

●●
●●●●

●●
●

●
●

●

●

●●
●●●●

●

●●●

●

●●
●●●

●

●●●●●●

●
●
●●●●

●●

●●●
●
●●
●●●●●●●

●●
●

●●

●
●●●●●● ●● ●● ●●●● ●●●●● ●●● ●●● ●● ● ●

●● ●●●●● ●●
●●●

● ●

● ●● ●
●●

● ●● ●●●●

●

●

●

●●●●

●

●●●

●● ●●●●●

●●●●●● ●
●● ●● ●

●●●●

●

●

●●●●● ●

●●

●
●●●●●

●
●

●●
●

●
●

●
●

●
● ●●

●
●
●

●●
●● ●

●●
●

●
●

●
●

●●
●● ●

●
●●●●
●
●

●

●
●

● ●

●●

●

●●

●●

●
●

●●●●
●

●●
●

●●● ● ●

●●
●●

●● ●●
●●●

●
●

●

●●

●
●
●
●

● ●●

●

●
●

●

●

●●●

●
●

●
●●

●

● ●●
● ●

●●●
●

●

●●

●

●

●●●● ●●●●
●
●

●
●●

●

●

●

●

●●
●●

●
●

●●
●
●
●

●

●
●

●

●

●

●
●

●● ● ●● ●● ● ●● ● ●●● ●● ●●●●● ●●●

●●● ●● ●
●
●

●
●

●
●
●●

●
●

●
●● ●●

● ●● ●●● ● ●● ●● ●● ●● ●●●●
● ●

●●

●
● ●●●●●

● ●● ●●● ●● ●
●●
●●
●●

● ●

●
● ●●●

●●●●●●●●
●

●
●●●●●● ●●●●

● ●●
●
●
●

●●●●
● ●●

●●
●● ●
●

●
●
●
●
●
●

●●
●
●
●

●
●●

●●● ●●
●●

●●
●●●
● ●

● ●●
●
●●
●

●●● ●
●●●

●

●

●

●●●

● ● ●●●

●● ●● ●●

●
●●●

●

●●
●

●●●
● ●
●
● ●●
●

●
●●
●● ●●● ●

● ●

●
●

●●●●

●
●
●●●
●●
●● ●

●

●●●●
●

●●

●

●

●
●
●
●●●●●●
●

●●
●
●●●●
●●
●
●

●●

●

●●●●●
●● ●

●●
●

●
●
●●

●
●
●●

●
●
●●●

●●●

●

●●●●
●
●●●
●
●●●

●
●●●

●

●●● ● ●●●● ●●● ●●● ●● ●
●●●
●●●●
●●
●
●
●●
●
●
●
●

● ●
●
●
●●●

●●●●●●●
●

●
●
●
●

●●
●●●
●●
●

● ●●

●●●
●●

●●●●●●●●●●●●●●●●●●
●●
●●●● ●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●● ●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●● ● ●●●
●●●● ●●●●●●

●●●
●●

●
●

●
● ●●● ●● ●●●●●

●
●

●● ●● ●● ●●●●● ●●

●●●● ●●●
●

●
●

●●
●

●
●

●
● ●

●● ●● ●●● ●●● ●●●

●●
●

●●●
●

● ●
●●
●
●●
● ●●● ●● ●

●●
●

● ●●
● ●
●● ●●●●● ●●

●● ●●●● ●●●● ●●●●●●
●
●
●

● ●●●●●● ●●

●
● ●●●

●●●

●●●
●

●●● ●● ●●●● ●
●

●●
●● ●●

● ●●●●●● ●● ●● ●●● ●●● ●●● ●● ●
●●

●●●
●

●●●● ●
●

●
●●● ●● ●●● ●●●

●

●
●●

●● ●●
●

●
●●●●
●●●
●●●●●
●●●●●

●●●● ●●●●●●●●
●

●
●●
●
●●

●●
●●●

●
●

●●

●
●●
●
●●●●●●●

●●●●●●●●●●● ●
●
●●●●●●●●●●
●
●●

●
●●●●●● ●
●●
●
●●●●●●●

●

●●
●●
● ●● ●
●●
●●●●
●● ●●
● ●
●● ●

●
●●●●●●●

●

●●
●

●●●●
●●●
●
●●
●
●

●
●●●●●●●●●●

●●●●
●
●
●●●
●
●●

●●●●●●●
●
●●●
●
●●●●●●●●●
●
●●●
●●●●●
●●
●●

●●●
●
●●●●●●●●●●
●
●●

●●●●●● ●● ●● ●●●● ●●●●● ●●● ●●● ●● ● ●
●● ●●●●● ●●

●●●● ●
● ●● ●

●
●

● ●● ●●●●

● ●● ●●●●● ●●●

●● ●●●●● ●●●●●● ●
●● ●● ●

●●●●

●

●

●●●●● ●●● ●

●●●●●●
●

●●
●

●
●

●
●

● ●

●●●●●
●●●● ●
●●

●

●●● ●●
● ●● ●●
●●●
●●
●●●●

● ●●●● ●

●

●●

●
●●●

●●
●

●●

●

●●● ● ●●

●

●●

●● ●●●●●

●●●

●
●●

●●●● ●
●
●●●●

●

●●●●
●
●
●

●
● ● ●●● ●●●●
●

●●●● ●

●●●● ●●●●●●●●●●●●

●●

●

●●

●●

● ● ●●●● ●●●●● ●●● ●●●

● ●

●●

●

●

Estimated scalar peak performance (Kops/s)

Estimated vector peak performance (Kops/s)

Compute−memory ratio (Gops/s per GB/s)

Peak memory bandwidth (GB/s)

Figure 2.3: Historical data on 1403 Intel microprocessors showing the scaling of an estimate
of peak performance (both scalar and vector) and peak memory bandwidth.

1995 2000 2005 2010

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

Year of introduction

● ●

●● ● ●
●●

●
●

●

●

●
●

●

●● ●●● ●●
●

●●

●●

●
●●●●

●
●
●

●

●

●●
●
●●
●

●

●●

●

●
●

●●

●

●

●

●●
●
●
●
●

●
●

●
●

●
●

●
●

●●
●
●●

●
●●●
●

●
●
●●

●

●

●
●●

●

●
●●

●

●●

●

●
●
●

●

●

●
●
●
●

●

●

●●●
●
●

●

●●

●

●

●
●●
●
●●
●

●

●
●
●●●

●

●
●
●

●●

●

●
●●

●

●

●

●
●

●
●●●●
●

●
●●
●
●
●

●●

●

●
●●

●

●

●●
●
●

●
●
●

●●

●
●●
●
●

●

●

●

●●

●

●
●
●
●●
●

●
●●
●
●
●

●

●●

●

●
●
●
●
●●

●
●
●●

●

●
●●

●

●●
●

●
●●●

●●●
●
●●

●●

●

●
●●●●
●●●

●

●

●

●●●●
●
●
●●●

●●
●●●●●
●

●

●

●●

●

●●●●
●

●●

●

●
●●
●
●●

●

●●

●

●●●●●

●
●

●●

●

●●●●●●

●●●

●●●

●●

●

●●●●●

●

●●

●●

●

●●
●

●●●

● ●

●● ● ●
●●

●
●

●

●

●
●

●

●● ●●● ●●
●

●

●

●
●
●●
●●●

●

●

●

●

●●

●
●●●

●
●●
●●

●●●

●

●
●

●
●●

●

●●
●●
●

●
●

●

●●●●●●●
●●●●

●

●●
●●

●●

●
●●
●●
●●

●

●●
●●●●●●

●

●

●
●

●●
●●●●
●
●●
●●●

●
●
●
●●●●

●
●
●●

●
●
●●●●●●

●

●
●
●
●

●
●
●
●

●●●●

●
●
●
●●

●

●

●
●●

●

●

●

●●
●
●
●●

●●●●●●●

●

●

●

●
●
●●●

●

●

●

●

●●

●

●

●

●●●●●●
●

●●

●●●

● ●

●
● ● ●

●●●●

●
●
●

●

●

●● ●●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●●●

●

●

●
●●

●

●

●
●
●

●
●

●●
●

●●

●

●●

●
●

●

●

●●

●
●

●
●

●
●

●●●

●

●

●
●
●
●

●

●
●

●

●●
●

●

●●

●
●

●●●

●

●●●●
●
●●

●●

●●

●

●

●●●

●●

●●
●
●

●

●

●
●

●●

●●

●

●

●

●
●

●

●●●

●●●●

●●●

●

●●●

●●●

●

●

●

●
●

●
●

●

●

●●●

●●

●
●
●

●

●●

●

●
●

●●
●
●

●●

●

●

●

●●

●●

●
●
●●

●●●
●●●●●

●

●

●●

●●

●

●●●

●●

●●●●●

●

●

●●

●

●●

●

●●●

●

●●●
●
●

●

●

●

●●

●●

●

●
●

●●●●●
●

●●
●

●●●

●●
●

●●

●●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●●●
●

● ●

●
● ● ●

●●●●

●
●
●

●

●

●● ●●●

●
●

●

●

●

●●
●

●

●
●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●●

●●
●

●●●●

●●

●
●

●

●

●
●

●

●●●●●

●●●

●

●●●●
●●
●
●●

●●

●

●●●●●

●●●

●●

●
●

●●
●
●●●

●●●●●●

●●

●●

●

●●●

●●●●●

●

●

●

●●●

●

●

●

●●

●
●

●●

●
●

●●

●

●

●●

●●

●
●

●

●●●●●
●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●●●●●●

●

●
●
●

●●

●●●

●

●●

●

●

●

Estimated peak performance (Kops/s)

Compute−memory ratio (Gops/s per GB/s)

Peak memory bandwidth (GB/s)

Figure 2.4: Historical data on 566 NVIDIA GPUs showing the scaling of an estimate of peak
performance and peak memory bandwidth.

13

Chapter 2. Motivation and outlook

factor (1 for SDR, 2 for DDR/(G)DDR2/(G)DDR3, and 4 for GDDR5). Note
that GPU workloads are typically more bandwidth hungry.

Figure 2.3 shows the estimated peak performance and memory bandwidth
for Intel CPUs. The figure also plots the compute-memory ratio: the ratio be-
tween the microprocessor’s peak performance (vector instructions) and the off-
chip memory bandwidth. Between 1990 and 2000 growth of the compute-memory
ratio is exponential, following Wulf and McKee’s predictions (not considering la-
tency). However, the growing gap has stabilised after 2000, with techniques such
as double-pumping and multi-channel memories pushing the bandwidth further.
Emerging technologies such as eDRAM and 3D stacking [33] are expected to con-
tinue the growth of memory bandwidth, allowing processor performance to scale
further without increasing the compute-memory ratio.

For GPUs, the historical compute-memory ratio is different. Figure 2.4 shows
that the peak performance outgrows the memory bandwidth, leading to a growth
in the compute-memory ratio. In other words, Wulf and McKee’s predictions in
terms of memory bandwidth still hold. The reason for this is the GPUs tighter
coupling (compared to CPUs) of performance growth to Moore’s law. While CPUs
are spending a large portion of the available transistors on supporting structures
(e.g. caches), GPUs simply increase the number of processing elements (possible
for highly parallel workloads), leading to a higher peak performance.

From our data, we conclude that the trend of an increasing gap between mi-
croprocessor and memory performance is indeed visible for GPUs. However, for
CPUs, the compute-memory ratio has already hit a ‘wall’ at around the year
2000. This is caused by a combination of two factors: 1) when applications be-
come memory bandwidth limited, CPU designers will rather spend transistors
on larger caches than on a higher peak performance, and 2) the end of the free
performance lunch has made it less straightforward to increase performance for
applications with limited parallelism. In any case, for both CPUs and GPUs, the
memory wall still plays a major role in microprocessor and application design.

2.1.3 Implications to programmability

The multi-core and many-core trends have severely impacted the programmability
of current microprocessors. To exploit the full performance potential, program-
mers have to partition their applications into multiple concurrent threads, which
might require communication and synchronisation at multiple levels. Further-
more, depending on the architecture, the programmer has to manage the sharing
or privatisation of data structures. In some cases, designing a concurrent version
of an application requires a complete change of the underlying algorithms. For
example, an efficient algorithm with limited parallelism can be replaced by a less
efficient but highly parallel algorithm to improve overall performance.

Similarly, the memory wall has impacted the programmability of current mi-
croprocessors. To counter the memory wall, microprocessors have been equipped
with on-chip caches and scratchpad memories. However, scratchpad memories

14

2.2. The prospect of dark silicon

have to be explicitly managed by the software: it is a compiler’s or programmer’s
task to orchestrate data movement to and from these memories. Moreover, even
though caches are hardware-managed, programs must be designed with cache
friendly memory access patterns and must be scheduled in a cache-aware manner
for optimal performance. Other aspects related to the memory wall affecting the
programmability are for example burst accesses, pre-fetching, and non-uniform
memory access times.

Related to the increased required programming effort is the decreased portabil-
ity : program code can for example be fine-tuned for a specific degree of parallelism
or for a specific memory hierarchy. In fact, porting the code to another archi-
tecture could require significant modifications [124]. Furthermore, concurrent
execution makes it significantly more difficult to find bugs in program code [31].
Moreover, as program code deals more and more with performance aspects such
as concurrency and data orchestration (and less with the actual functionality),
code maintainability and programmer productivity can further decrease.

As an example, consider the computation of a histogram, a common task in im-
age processing. A histogram H can be computed by performing unit votes on loca-
tions equal to values of the input A. This can be written in C code as H[A[i]]++,
with i being a loop index iterating over all elements of A. Implementing such a
small program (1 line of C code) on a GPU requires very detailed architectural
knowledge and significant programming effort, as demonstrated in [9] and [16].
Although all iterations can be performed in any order (and thus in parallel), the
updates to H are required to be done atomically. Therefore, the computation
is implemented in the form of a reduction tree: threads first compute their local
histogram, after which the threads are synchronised and the histograms are aggre-
gated pair-wise. This is performed iteratively using a tree structure, resulting in
reduced parallelism after each step. Other examples of aspects to consider when
implementing a histogram computation on a GPU are on-chip memory bank-
conflicts and padding, coalesced memory accesses, the granularity of parallelism,
and the use of hardware or software atomic operations.

2.2 The prospect of dark silicon

So far we have seen the current trends and their impact on the programmability
of microprocessors. The work performed in this thesis is further motivated by
discussing predictions of the (near) future trends and their implications to pro-
grammability. In particular, the focus lies on the trends of dark and dim silicon.

2.2.1 Dark and dim silicon

The previous section has already discussed the end of Dennard scaling and the
multi-core and many-core decade it has brought us. However, a more careful study
on the end of Dennard scaling identifies another (near future) trend, named ‘the

15

Chapter 2. Motivation and outlook

utilisation wall ’ or ‘dark silicon’. This trend predicts that microprocessors will
(limited by power dissipation) not be able to switch all transistors at a given
time: a portion of the chip will be ‘dark’. In fact, analytical models such as
Esmaeilzadeh’s [57] predict that already 50% of the chip will be dark by 2018.

Let us take a closer look at technology scaling to understand the reason be-
hind dark silicon [133]. Our explanation is based on a scaling factor S between
two technology nodes. For example, going from feature sizes of 45nm to 32nm
corresponds to S = 1.4. Scaling by a factor S results in a transistor count increase
of S2 (scaling in two dimensions) and a switching frequency increase of a factor
S. Together, this gives us a performance potential of S3. However, this potential
can only be exploited if a constant power budget is maintained. Previously, with
Dennard scaling, scaling by a factor S also resulted in a factor S reduced transis-
tor capacitance and a factor S reduced switching voltage (or S2 reduced power).
Together, this resulted in a S3 power scaling, equal to the performance potential.
However, the end of Dennard scaling limits the reductions in supply voltage, leav-
ing us short a factor S2. Thus, although there is a performance potential of S3

(2.7 going from 45nm to 32nm), only a factor S (1.4 from 45nm to 32nm) can be
exploited if a constant power budget needs to be maintained.

Summarising, there is a gap of S2 (where S is the technology scaling factor)
between the theoretical performance potential (S3) and the power-neutral per-
formance potential (S). If the chip size remains constant, this gap forces parts
of microprocessors to be switched off (dark silicon) or operate at a significantly
reduced clock frequency (dim silicon) in order to make the power budget [133]. In
fact, existing microprocessors already start to include dark and dim silicon. For
example, let us take a look at a die photo of an Intel Atom Penwell processor, as
given in figure 2.5. Some of the components are unused and switched off (dark)
in most scenarios, e.g. the video decoder and the image signal processor. Other
components are significantly less power hungry (dim) compared to the main CPU
and GPU core on the chip, e.g. the display controller and the audio processor.

2.2.2 Implications to computer architecture

To predict the implications of dark silicon for performance growth Esmaeilzadeh
et al. [57] constructed a detailed analytical model consisting of three sub-models:
1) an ITRS-based technology scaling model, 2) a core power-performance scaling
model based on empirical data, and 3) a multi-core and many-core architectural
scaling model. Even in the most optimistic case, they find only an average 7.9x
speed-up over 10 years (23% per year) for the PARSEC benchmark suite. A more
conservative approach suggests only an average 3.7x speed-up over 10 years for
the same benchmark suite.

If Esmaeilzadeh’s predictions are correct, dark silicon will severely impact
the growth of microprocessor performance. However, this might lead to new
innovations in computer architecture and drive a new class of microprocessor
architectures that ‘spend’ chip area to ‘buy’ energy efficiency. In recent work,

16

2.2. The prospect of dark silicon

Figure 2.5: Die photo of an Intel Atom Penwell processor. The different components (micro-
processors and other logic) are identified and labelled. Photograph: © Hiroshige Goto (2012).

Michael Taylor has identified four key techniques [133] as reactions to dark silicon:

1. Shrinking silicon. A logical reaction to unused silicon is to make chips
smaller, reducing costs. However, making chips exponentially smaller will
quickly turn silicon cost into a negligible fraction of the overall chip cost
(e.g. packaging, testing, marketing), leading to a lack of incentive to scale
to smaller transistors. Other issues with smaller chips are related to thermal
hotspots and a reduced number of I/O pins. Taylor argues that chips will
only shrink in size if no other way of using silicon can be found.

2. Dim silicon. Another possible reaction to dark silicon is to design general
purpose logic that either runs at a low clock frequency or is used infre-
quently. Possible techniques are near-threshold voltage implementations
of wide SIMD processors, coarse-grained reconfigurable arrays (CGRAs),
larger caches, or computational sprinting. Some of these techniques are
already available in current microprocessors. An example is Intel’s Turbo
Boost, a form of computational sprinting where the power budget is tem-
porarily exceeded after which a ‘dark’ period follows. Others, such as
CGRA, have not yet gained much popularity outside academia. With
CGRAs, multiplexing costs of microprocessor pipelines are avoided by ex-
plicitly laying out the computational data-path in space [69, 99].

3. Specialised co-processors. Because area is becoming cheaper, a chip can
be equipped with many domain-specialised co-processors, each designed to

17

Chapter 2. Motivation and outlook

be significantly more energy efficient for a specific domain compared to a
general purpose processor. In such a design, applications are required to
migrate to different co-processors, executing where it is most efficient. The
Intel Atom Penwell of figure 2.5 already shows this in some form. However,
Taylor expects the number of co-processors to scale much further, such as
done in the GreenDroid architecture [68].

4. New classes of circuits. Finally, Taylor identifies a ‘deus ex machina’: the
possibility of a breakthrough in semiconductor technology. Such a break-
through will need to fundamentally change the way we build transistors to
reshape computer architecture as we know it today.

We note that from Taylor’s four key techniques, only dim silicon and spe-
cialised co-processors are directly related to computer architecture. Thus, from
a computer architecture perspective, Taylor concludes that we will move towards
more energy efficient and dynamic microprocessor designs (dim silicon), and to-
wards an increased amount of specialised co-processors or accelerators.

2.2.3 Implications to programmability

While programmability is not yet recovered from the multi-core and many-core
decade, dark silicon is already looming on the horizon. If Taylor’s predictions
of increasingly dynamic and specialised microprocessor designs are correct, pro-
grammability will definitely take another hit. In this section, we illustrate this by
discussing some examples taken from Taylor’s predicted shift towards dim silicon
and specialised co-processors [133].

As discussed, dim silicon might lead to the adoption of CGRAs [69]. Such
processors allow the data-path layout to be programmed, requiring programmers
to work with programming paradigms significantly different from traditional mi-
croprocessors. Another example are low-power wide SIMD processors, requiring
programs to be tailor made to wide vector data-types. In some cases, such low-
power designs might lead to special restrictions imposed upon the application,
lowering programmer productivity [123].

Furthermore, major challenges lie in the programmability of specialised co-
processors [57]. Currently, there are already significant programmability issues
with accelerators such as GPUs [61]. The future might bring many of these
accelerators, each with their own ISA (instruction set architecture - e.g. x86-64
or ARM), their own form of parallelism (vectors, threads, data-flow, tasks), their
own memory space (virtual or physical), their own memory hierarchy, and so
on. This will lead to a computing environment where a significant programming
effort will be required to optimise a given application for processors composed of
multiple of such accelerators.

18

2.3. Addressing programmability issues

2.3 Addressing programmability issues

So far, we have mostly discussed the necessity to address programmability: it has
become a major challenge and is expected to remain so in the near future. This
section glances over a wide range of existing approaches to address programma-
bility issues, identifying both alternatives and opportunity. Each of the remaining
chapters of this thesis will further discuss specifically related approaches in-depth.

2.3.1 Programming languages and frameworks

Many existing programming languages and frameworks raise the level of abstrac-
tion to address the current programmability issues. This section discusses some
of the most known or promising GPU-compute languages and frameworks (see
also figure 2.7 for an overview). First, the traditional GPU-compute program-
ming frameworks (mid-level) are discussed, followed by an overview of low-level
intermediate languages. Finally, several high-level languages are discussed.

Traditional GPU-compute programming frameworks

NVIDIA’s CUDA is one of the most well known GPU-compute frameworks [107],
even though it is vendor specific. The CUDA-C language, derived from C++,
is used to express the kernel : a small program that is executed for each thread.
CUDA defines a grid of threadblocks, each containing a set of threads (see also
the example given in figure 2.6). This hierarchy can be organised in a 1D, 2D
or 3D fashion. The use of local ‘shared’ scratchpad memory and synchronisation
barriers is possible only within a threadblock. In current GPUs, this requires an
entire threadblock to be mapped onto a single GPU core. A CPU host needs
to be present to launch the kernel and to orchestrate data movement to and
from the GPU’s off-chip memory. The CUDA framework has gradually evolved
to become more high-level (e.g. through the addition of the Thrust library), but
still retained its low-level fine-tuning possibilities for expert programmers. CUDA
is well documented, there is a large user-base, and there are many libraries and
tools available, including integration with languages such as Python and Matlab.

OpenCL is the answer of the Khronos group to CUDA. In contrast to CUDA,
OpenCL is an open standard and is currently supported by many different plat-
forms, including processors other than GPUs such as Intel CPUs, the Cell Broad-
band Engine, and Altera’s ZinQ FPGAs. OpenCL and CUDA-C kernels are very
comparable, but OpenCL’s explicit kernel compilation approach (programmers
have to call the JIT-compiler manually through the API) and multi-platform
support imply large amounts of boilerplate code. Furthermore, because OpenCL
is a standard, it lags behind CUDA in terms of features. OpenCL and CUDA
can show comparable performance on NVIDIA GPUs [58]. However, OpenCL’s
portability does not imply performance portability across different platforms [112].

19

Chapter 2. Motivation and outlook

grid of 2x3 threadblocks

blockIdx =
(1,0)

blockIdx =
(1,1)

blockIdx =
(1,2)

blockIdx =
(0,1)

blockIdx =
(0,2)

3,3

block of 4x4 threads

__global__ void copy(float *in, float *out) {

 int tidx = blockIdx.x * blockDim.x + threadIdx.x;

 int tidy = blockIdx.y * blockDim.y + threadIdx.y;

 out[tidx + tidy*N] = in[tidx + tidy*N];

}

blockDim.x = 4
blockDim.y = 4

Figure 2.6: An example CUDA thread configuration, showing a 2x3 grid of 6 threadblocks,
each with 16 threads arranged in a 4x4 matrix. With the example CUDA-C kernel code, each
thread copies a single value from an input into an output array.

On a similar level as CUDA and OpenCL are DirectCompute and Render-
Script. DirectCompute is part of Microsoft’s DirectX and is only available for
Windows. DirectCompute’s kernels are programmed in HLSL (high-level shad-
ing language), similar to GLSL (the OpenGL shading language). RenderScript is
Google’s compute framework for Android devices. It is very similar to OpenCL,
but mostly supports execution on mobile devices, such as ARM CPUs and Imag-
ination Technology’s PowerVR GPUs.

Low-level intermediate languages

Because the ISA can change slightly among different generations of NVIDIA
GPUs, the PTX intermediate language was introduced as a compilation tar-
get [107]. To target the actual ISA, just-in-time (JIT) compilation is used: PTX
code is compiled just before the GPU program is executed. The PTX language
is an assembly-style language containing the kernel program only. Although it is
not common to express programs in PTX, it is possible.

In response to NVIDIA’s PTX, Khronos has recently released specifications
for OpenCL SPIR, an OpenCL standard portable intermediate representation.
SPIR is derived from LLVM’s intermediate representation (LLVM-IR), making it
straightforward to adopt for existing LLVM-based compilers.

Another low-level language is HSAIL, an intermediate language designed by
the HSA Foundation. The ultimate goal of this foundation is to address the
programmability issues of GPUs, CPUs, other devices, and combinations thereof.
HSAIL is a virtual ISA supporting all of C++ and targeting a wide range of
devices. It is meant as a compilation target for OpenCL, C++AMP and others.

20

2.3. Addressing programmability issues

(NVIDIA)

PTX

(NVIDIA)

CUDA
(Microsoft)

DirectCompute / HLSL
(Khronos)

OpenCL
(Google)

RenderScript

(Khronos)

SPIR
(HSA Foundation)

HSAIL

NVIDIA
GPUs

AMD
GPUs

non-GPU
devices

mobile
GPUs

(Cray, CAPS, NVIDIA, PGI)

OpenACC
(Khronos)

OpenMP 4.0
(BSC)

 OmpSs

(Microsoft)

C++AMP

d
e

v
ic

e
s

lo
w

-l
e

v
e

l
la

n
g

u
a

g
e

s
h

ig
h

-l
e

v
e

l
la

n
g

u
a

g
e

s

(+Thrust)

Figure 2.7: Overview of some of the most known and promising GPU-compute languages
and frameworks. Blue arrows indicate compilation paths: solid for current and dashed for
announced paths. The light green horizontal arrows indicate the merging of the OpenACC and
OmpSs directives into the OpenMP 4.0 standard.

High-level languages and frameworks

Microsoft’s C++AMP is a high-level language targeted at CPUs and GPUs
(through HLSL). It is implemented as a library on top of C++ and requires little
modifications to enable GPU acceleration. C++AMP manages CPU-GPU data
transfers implicitly, improving programmability. C++AMP is therefore promis-
ing, additionally because the low-level HSAIL is designed to support its features.

OpenACC is a standard for compiler directives for GPUs, backed by among
others CAPS, PGI and NVIDIA. OpenACC’s directives enable straightforward
GPU acceleration, although optimal performance is not always achievable [141].
Most of the directives are being pushed into the upcoming OpenMP 4.0 standard.

OmpSs is a set of GPU compiler directives from the Barcelona Supercomputing
Center (BSC) influenced by OpenMP and StarSs [54]. OmpSs has properties
similar to OpenACC, and parts are also being pushed into OpenMP 4.0.

A final example are domain-specific languages (DSLs). These languages are
typically high-level and tuned for a specific application domain (e.g. mathematics
or image processing). Examples are the OP2 [30] and OptiML DSLs [14].

2.3.2 Architectural support for programmability

Another way to address the programmability issues is to provide architectural
support : the microprocessor is adjusted to include some of the programmer’s
or compiler’s work into hardware. Such architectural support can come at the

21

Chapter 2. Motivation and outlook

expense of energy, chip area or performance. In this section, we illustrate the
efficiency versus programmability trade-off by discussing examples of architectural
support for programmability in GPUs: 1) on-chip cache memories, 2) relaxed
memory coalescing requirements, and 3) dynamic warp formation.

Firstly, let us discuss caches. On-chip memories can reduce traffic to off-
chip memories, and decrease latencies for load and store operations. Most older
(pre-Fermi) GPUs are equipped with programmer-managed on-chip memory (the
scratchpad), while more recent GPUs (e.g. NVIDIA’s Fermi and Kepler) also in-
clude hardware-managed on-chip memory (caches). With a scratchpad memory,
it is the programmer’s task to explicitly perform loads and stores to ensure that
specific data-structures reside in the on-chip memory. In contrast, when using a
cache, data-movement is transparent to the programmer: a pre-defined replace-
ment policy determines which data-elements are stored on-chip. A cache can thus
improve programmability: the programmer is no longer required to manage the
on-chip memory. However, programmer-managed data-movement can in many
cases outperform a cache’s replacement policy. Nevertheless, this trade-off is more
complicated. For example, a cache can still outperform a scratchpad, for example
in the following cases: 1) the memory accesses are dynamic, i.e. they change from
run to run, or 2) the overhead of additional scratchpad data-movement instruc-
tions (address calculation, loads, stores) is high.

Secondly, we discuss increasingly relaxed memory coalescing requirements.
Many GPUs can unite (or coalesce) multiple memory accesses into a single larger
access [107]. This ‘memory coalescing ’ is a necessary requirement for most GPUs
to benefit from the high memory bandwidth. As a consequence, GPU program-
mers prioritise meeting the memory coalescing requirements over other optimi-
sations. Architectural modifications have relaxed these requirements gradually
over the last years [107], improving the GPU’s programmability at the cost of in-
creased hardware complexity. For example, NVIDIA GPUs now require only two
instead of 32 individual memory accesses when a warp’s accesses are misaligned.
Furthermore, the L1 cache’s recombination logic can mitigate the performance
loss of earlier GPUs for non-sequential (shuffled) accesses.

Finally, we briefly mention dynamic warp formation. As discussed in sec-
tion 2.4.3, the GPU’s default static formation of warps is not necessarily opti-
mal: a thread’s properties can change over time. Therefore, it has been pro-
posed [63, 102, 105] to address this problem dynamically in hardware. This is
again a form of architectural support to improve programmability, as program-
mers have to spend less effort to for example reduce branch divergence.

2.3.3 Iterative compilation

Although modern compilers are powerful, they are not able to perform all opti-
misations required to generate efficient code. Performing such optimisations is
left as a task for the programmer, or, as discussed earlier, might be solved by
specific programming languages or architectural support. Another approach to

22

2.4. Example: An adaptive GPU architecture

solve these issues of programmability is to make compilation iterative. Iterative
compilers learn over time through a feedback-loop from the impacts of their own
decisions [53, 64]. We illustrate this by highlighting a number of compilers: 1)
a machine-learning infrastructure for GCC, 2) a machine-learning compiler for
polyhedral transformations, and 3) a GPU matrix-multiplication auto-tuner.

Milepost GCC [64] is an example of a compiler that is able to learn optimisa-
tions for a specific processor architecture based on a feedback-loop. The compiler
(an extension to GCC) uses machine learning to automatically learn from compi-
lation runs, taking into account the correlation between an application’s features,
run-time behaviour, and the chosen optimisations. Milepost GCC is constantly
evolving, as it learns from a growing on-line database of compilation runs.

The second example is an iterative compiler performing polyhedral transfor-
mations [109]. The polyhedral model is a powerful framework to perform loop
transformations (see also section 3.2.1). However, due to the complexity and va-
riety of modern microprocessors and the wide extent of possible transformations
(and combinations thereof), it is far from trivial to find a set of transformations
that lead to improved performance. The iterative compiler first performs a train-
ing phase in which sets of transformations are applied and performance data is
collected. From the initial training data a performance model is generated us-
ing machine learning algorithms. Based on the trained performance model, the
compiler is able to select a set of useful polyhedral transformations.

Another example of iterative compilation is an auto-tuner designed specifically
for the matrix-multiplication kernel on GPUs [94]. Since matrix-multiplication
forms the basis for many linear algebra computations, it has been heavily fine-
tuned for many different GPUs. This process of fine-tuning can be automated
using an auto-tuning framework, in which many variants of the code are gen-
erated and empirically evaluated on hardware. In some cases, auto-tuning even
outperforms manual tuning, illustrating the vastness of the optimisation space.

2.4 Example: An adaptive GPU architecture

To further illustrate the impact of trends such as dark silicon on the GPU architec-
ture, seven opportunities for architectural improvements enabled by the discussed
trends are discussed. These opportunities are enabled by three architectural pa-
rameters which are discussed individually in the following sections: 1) the number
of active threads, 2) the ratio between the compute power and the off-chip mem-
ory bandwidth, and 3) the number of processing elements in a core and the size
of a scheduling unit (warp).

We use NVIDIA’s G80 GPU [95] as an example GPU throughout this section,
although most desktop GPU architectures have a relatively similar high-level de-
sign. The G80 architecture has up to 16 cores, each containing 8 processing
elements (PEs). PEs in a core share an instruction cache, instruction fetch and
decode stage, a thread scheduler, a register-file, and an on-chip scratchpad.

23

Chapter 2. Motivation and outlook

2.4.1 Parameter 1: The number of active threads

One of the characteristics of a GPU is its ability to hide pipeline and off-chip
memory latencies through fine-grained multi-threading. If sufficient parallelism is
available in the application and the GPU’s register-file is large enough, these la-
tencies can be hidden entirely. The register-file is required to store the context for
each of the active threads to enable zero-overhead context switching. For example,
for the G80 with 8 PEs per core, the pipeline latency for basic ALU operations is
22 cycles [107] and the off-chip memory latency is on average ±600 cycles [107].
Assuming that all instructions are dependent on the previous instruction, at least
22 · 8 = 176 active threads per core are needed to hide the pipeline latencies.
With off-chip loads only, at least ±600 · 8 = ±4800 active threads are needed. In
practice, 256 or 512 active threads per core on the G80 is enough: they do not
only contain memory accesses and their flow-dependences are limited.

Trade-offs

Allowing a large active thread count requires a large register-file, consuming power
and occupying chip area. On the other hand, when the active thread count is not
high enough to hide the latencies, performance can drop significantly as PEs are
becoming idle. The optimal value for the active thread count is therefore depen-
dent on many factors: the pipeline depth, the off-chip memory characteristics, the
number of PEs per core, the thread scheduling mechanism, and the application.
Because the application is typically unknown at microprocessor design time, the
trade-off becomes a dynamic problem. Performing analysis of typical workloads
can help to get insight in the statistical properties of occurrences of off-chip loads
and dependencies.

Opportunities for improvements

Two opportunities for architectural improvements with respect to the number of
active threads are identified: 1) a dynamically-sized register-file, and 2) a latency-
aware thread-scheduler.

To save power when a small number of active threads is sufficient, we propose
to add a dynamically-sized register-file to each core. Instruction sequences
(e.g. at kernel-level) can be analysed statically where possible and dynamically
otherwise to determine how many registers are required to accommodate a suf-
ficient number of active threads. In case a high number of registers is required,
another component (e.g. a cache) can be turned-off to maintain constant power
(i.e. it becomes ‘dark’). In this way, the register-file can benefit from power sav-
ings for workloads that only require a low number of active threads (as shown
for a hierarchical register-file in [67]). This is in contrast to current GPUs that
greedily schedule the largest number of threads possible.

Furthermore, a latency-aware thread-scheduler can reduce the required
number of active threads. A GPU schedules warps that are ready for execution

24

2.4. Example: An adaptive GPU architecture

in a round-robin fashion: instruction per instruction [107]. For example, in the
program of listing 2.1, instruction 1 will first be executed for all threads, followed
by instructions 2, 3, and 4. However, since instruction 4 is dependent on the
result from an off-chip load, a large number of active threads are required to
hide the latency of instruction 3. In contrast, a latency-aware scheduler would
give preference to scheduling instructions 1, 2 and 3 for a subset of the active
warps first, such that the long latency of instruction 3 can be hidden by executing
instructions 1, 2 and 3 of a second subset of active threads. To hide pipeline
latencies as well, the subset size must be set equal or larger to the pipeline latency.
This idea can be implemented in the form of two-level warp scheduling [105].
Two-level warp scheduling groups warps into fetch groups and schedules normally
within such a group. However, execution can only switch to another fetch group
when all warps in a group are idle. This technique showed a performance increase
of 19% on average for a set of benchmarks [105].

i n s t r u c t i o n 1 : $r0 ← 2
i n s t r u c t i o n 2 : $r1 ← $r0 ∗ 4
i n s t r u c t i o n 3 : $r2 ← load [$r1]
i n s t r u c t i o n 4 : $r3 ← $r2 ∗ $r2

Listing 2.1: Example pseudo-assembly GPU code.

2.4.2 Parameter 2: Compute-memory ratio

The GPU is able to achieve a high theoretical throughput [61]. This is accom-
plished by two means: 1) by providing a large number of processing elements, and
2), by providing a high bandwidth to off-chip memory. While the first enables
high instruction throughput, typically measured in giga-floating point operations
per second (GFLOPS), the second enables high data throughput, measured in
gigabytes/s (GB/s). The ratio between the two (GFLOPS versus GB/s) is the
compute-memory ratio: an important design parameter for GPUs.

2dconv 2mm 3dconv 3mm atax bicg

oper.int. [flops/byte] 1.35 0.50 1.60 0.51 0.50 0.50
limit on M2090 mem mem mem mem mem mem

corr covar fdtd-2d gemm gesummv grams

oper.int. [flops/byte] 0.50 0.50 2.26 0.67 0.25 0.65
limit on M2090 mem mem mem mem mem mem

mvt syr2k syrk — backp bfs

oper.int. [flops/byte] 0.50 0.70 0.67 — 3.41 0.94
limit on M2090 mem mem mem — mem mem

gauss hotspot kmeans nw particle path

oper.int. [flops/byte] 2.08 27.33 4.15 8.79 1.99 14.33
limit on M2090 mem comp mem comp mem comp

Table 2.1: Operational intensities for the PolyBench/GPU (2dconv → syrk) and Rodinia
(backp → path) benchmarks, and their limits (compute or memory-bound) for a Tesla M2090.

25

Chapter 2. Motivation and outlook

An application can be classified as being either compute-bound (limited by in-
struction throughput) or memory-bound (limited by off-chip memory bandwidth).
To determine which limit applies, the metric operational intensity can be used,
measured in operations per byte [144]. To illustrate this, operational intensities
for two benchmark suites are shown in table 2.1: PolyBench/GPU [117] and Ro-
dinia [125]. We observe that benchmarks from PolyBench/GPU are on average
more memory intensive, while Rodinia benchmarks are more compute intensive.

A visualisation of the compute-memory ratio can be obtained by plotting
the roofline model, a very abstract performance model for microprocessors in
general [144]. The roofline model gives the maximum achievable performance for a
specific application based on its operational intensity and the hardware’s compute-
bound (instruction throughput) and memory-bound (memory bandwidth). An
example is given in figure 2.8 for an NVIDIA Tesla M2090 GPU. This figure plots
the operational intensities from the discussed benchmarks (table 2.1) as horizontal
lines. Additionally, it shows the averages of the two benchmark suites.

operational intensity [operations/byte]

p
e

rf
o

rm
a

n
c
e

 [
G

F
L

O
P

S
]

0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

1
1

0
1

0
0

1
0

0
0

●

●

●

●●●●●

●

●

●

●
●

●●

polybench

rodinia

● polybench

rodinia

averages

memory roof

compute roof

Figure 2.8: Roofline model for an NVIDIA Tesla M2090 GPU with data points from the
PolyBench/GPU and Rodinia benchmark suites.

Trade-offs

Similar to the active thread count parameter, designing a GPU’s roofline is a
dynamic problem. Performing application analysis can again help to solve the
compute-memory ratio trade-off for the average case, but will still result in over-
dimensioned hardware in practice: the variance among applications is large (see
table 2.1 for example).

Increasing the peak instruction throughput can be achieved by adding more
processing elements, increasing their clock frequency, or improving the IPC (in-
structions per cycle) of individual processing elements. On the other hand, in-
creasing the peak off-chip memory bandwidth can be achieved by increasing the
clock frequency of the memory or increasing the width of the memory bus.

26

2.4. Example: An adaptive GPU architecture

Opportunities for improvements

A dynamic compute-memory ratio (or: roofline) can be created to improve the
overall power efficiency of GPUs, enabled by discrete fixed modes of operation.
Two techniques to create a dynamic roofline are distinguished: roofline-aware
DVFS (dynamic frequency and voltage scaling) and dynamic compute core dis-
abling. Additionally, we identify the need to increase the operational intensity
architecturally.

Dynamic frequency scaling can be used to reduce the clock frequency of the
GPU core or off-chip memory, linearly lowering the compute or memory roofline.
For example, most benchmarks from PolyBench/GPU (see table 2.1) allow halving
the compute frequency without loosing performance1, while (theoretically) saving
up to a factor of two in terms of power. Furthermore, voltage scaling might be
applied in addition, lowering the voltage in combination with the frequency for
cubic gains in power (P = α · f · C · V 2). Roofline-aware DVFS can therefore
be seen as an opportunity for architectural improvement: a dynamic roofline can
save power while maintaining performance. Preliminary studies have shown that
roofline-aware DVFS is able to increase energy efficiency by up to 58% while
maintaining performance [8].

Similarly, linear power gains can be obtained by temporarily powering down
entire cores for memory-bound applications. This dynamic compute core dis-
abling is enabled by the GPU’s modular architecture and can be applied at
kernel-level granularity. As before, this lowers the roofline, saving power without
compromising performance. Similarly, memory banks could be powered down
for compute-bound applications. However, the memory consumes relatively lit-
tle power compared to the microprocessor core [93] and imposes constraints on
memory size and location.

Furthermore, we also identify the need to architecturally increase the op-
erational intensity of applications. As the growth of compute performance
is predicted to outgrow memory bandwidth growth despite emerging technolo-
gies such as 3D-stacking [85], an increasing number of GPU kernels will hit the
memory wall in the near future. To maintain performance growth, future archi-
tectures will need to improve and better exploit data-reuse by increasing the size
of register-files, caches and scratchpad memories.

2.4.3 Parameter 3: Core and warp sizing

GPUs typically contain multiple cores, each with multiple processing elements.
The G80 architecture for example can scale up to 16 cores, with each core contain-
ing 8 PEs. On each core, instructions are executed as warps: groups of threads
executing in lock-step. In table 2.2 we list several NVIDIA GPU families along
with their core and warp sizes. We identify these sizes as third design parameter.

1Note that this is according to the roofline model; the peak memory bandwidth might not be
achieved for low core clock frequencies due to a too low memory request rate.

27

Chapter 2. Motivation and outlook

PEs per core warps issued warp size release year

G80 (Tesla) 8 1 per core per cycle 32 2006
GT200 (Tesla) 8 1 per core per cycle 32 2008
GF100 (Fermi) 32 2 per core per cycle 32 2010
GF104 (Fermi) 48 4 per core per cycle 32 2010
GK104 (Kepler) 192 8 per core per cycle 32 2012
GK110 (Kepler) 256 8 per core per cycle 32 2013

Table 2.2: Warp and core sizes for various NVIDIA GPU families.

A GPU core contains a set of PEs that share common components (e.g. local
memories and pipeline stages) which are inaccessible by other PEs in the GPU.
For programming models such as CUDA and OpenCL, a threadblock or workgroup
typically maps in its entirety onto a single core. In a G80 core, PEs share among
others an instruction cache, an instruction fetch and decode stage, a scratchpad
memory and a texture cache.

Since PEs in a core share the first few pipeline stages with other PEs, they are
required to execute the same instruction at the same time. A core thus forms a
natural fit to execute instructions from a single warp. Nevertheless, as shown in
table 2.2, the warp size does not necessarily match to the number of PEs per core.
In fact, on the G80, the 8 PEs in a core temporarily schedule the execution of a
single warp, i.e. using 4 clock cycles for 32 threads [95]. Warps are thus a means
to create virtual cores in time. Energy is saved by creating two clock domains:
only a single instruction needs to be fetched and decoded every 4 cycles. Newer
GPUs have more complicated designs, as they are able to issue multiple warps
per core per cycle [107].

Trade-offs

To highlight the trade-offs of core and warp sizing, two extremes are discussed: a
core size equal to the total number of PEs, and a core size of 1. For clarity, we
assume in these cases a warp size equal to the core size and a single clock domain.

Many advantages can be identified for GPUs with a single large core. With
the G80 design as a starting point, the following main advantages are found: 1)
a significant area reduction and power saving by sharing various stages of the
pipeline (e.g. instruction fetch, instruction decode, branch logic), 2) a single
(larger) scratchpad memory can replace the existing smaller memories, 3) more
inter-thread communication is possible through the execution of potentially larger
threadblocks or workgroups, and 4), an increase in coalesced memory accesses by
recombining threads [90].

At the other extreme is a GPU with a single PE per core. The main advantages
for such a configuration are: 1) every PE can execute independent of others, i.e.
there is no branch divergence penalty, and 2) a core takes a small fraction of the
total chip area, making routing (e.g. of the clock tree) relatively easy.

28

2.5. Example: An adaptive GPU architecture

The advantages for both of these cases are disadvantages for the other. This
creates a trade-off with many factors, some of which are dynamic: an optimal
value can only be determined at run-time. The warp size can furthermore be
adjusted to create virtual cores, sharing many of the same trade-offs. However,
instead of reducing the chip area when creating larger cores, a larger warp size
will allow a reduction in clock frequency of the first pipeline stages, as only a
single instruction needs to be decoded per warp.

Opportunities for improvements

Two opportunities to address the trade-offs for core and warp sizing are identified:
run-time core fusion and dynamic warp formation and sizing.

Because a large core has advantages in terms of energy efficiency, it is appealing
to design a GPU with such a configuration. However, this can result in a severe
penalty in case of divergent kernels: one or more orders of magnitude depending on
the GPU and the kernel. To still be able to accommodate such kernels, we propose
to split a larger core in several smaller cores at run-time, creating an adaptive
configuration which can be changed at kernel-granularity (based on static analysis
or profiling). To be able to enable run-time core fusion, the hardware needs to
be able to accommodate the smallest core size and thus include for example an
instruction fetch and decode stage for every core [80]. Dark silicon justifies the
additional area costs by power gating components when the GPU is configured
for non-divergent kernels. Overall, a large core will significantly improve power
efficiency for non-divergent kernels by saving power and increasing performance
through e.g. increased opportunities for memory coalescing.

Secondly, dynamic warp formation and sizing is identified as an oppor-
tunity for improvement. Currently, warps are formed statically based on thread
indexing. However, several works have proposed to re-combine warps at run-
time [63, 102, 105], either to improve memory coalescing or to reduce branch
divergence. Apart from dynamic warp formation, warp sizing can also play a
major role to improve energy efficiency, as discussed in [90].

2.4.4 Discussion

This section identified opportunities for architectural improvements, including:
dynamic register-file sizing, latency-aware scheduling, roofline-aware DVFS, dy-
namic compute core disabling, run-time core fusion, and dynamic warp sizing.
Most of these are motivated by trends such as the memory wall and dark silicon.
Common to these opportunities is the dynamism and workload-adaptiveness: set-
ting architectural parameters at run-time enables a higher energy efficiency.

The discussed opportunities have shown possible directions of architecture
design. Of course, there are many other directions to explore. An example is the
GPU-CC architecture [37], which addresses the memory wall and energy efficiency
issues by enabling a second ‘pipelined’ configuration of a GPU’s PEs.

29

Chapter 2. Motivation and outlook

2.5 Summary

This chapter has discussed the current trends in microprocessor design, including
the continuation of Moore’s law, the end of Dennard scaling, and the recent multi-
core and many-core decade. We have also illustrated and discussed the memory
wall: the growing gap between microprocessor peak performance and memory
bandwidth. We also discussed the near-future trend of dark silicon and its impli-
cations to microprocessor design and programmability. Both dark silicon and the
current trends motivate our work: programmability of specialised microprocessors
such as GPUs is a major issue and is expected to become even more important
as increased specialisation is used to achieve energy efficiency.

We also gave an overview of some of the alternatives to the approach pre-
sented in the remainder of this thesis. We have discussed high-level programming
languages, architectural support for programmability, and iterative compilations.
Although each of the alternatives is promising, there is still room to further im-
prove the programmability of specialised microprocessors, as will be demonstrated
in this thesis.

30

“Who can explain why one species ranges widely and is very numerous,
and why another allied species has a narrow range and is rare?

Yet these relations [...] determine the present welfare, and, as I believe,
the future success and modification of every inhabitant of this world.”

- Charles Darwin (1859)

Chapter 3

Classifications of

program code

Throughout history, many classifications have been proposed for various reasons.
Classifications exist in many fields, including computer science, biology and chem-
istry. Although these classifications (or categorisations) have been applied to
many different types of objects, they have a common goal: classes (objects of
a similar kind or with common properties) allow objects to be recognised, dif-
ferentiated and understood in a structured manner. In this chapter, we discuss
classifications of program code: tools to help us recognise, differentiate and un-
derstand different types of program code. We see such a classification as a first
step towards improving the programmability of specialised microprocessors such
as the GPU. In other words, we first apply structure to our problem (this chapter)
before we implement a solution (chapter 4). Examples of existing program code
classifications are the Berkeley dwarfs [23], algorithmic skeletons [44], and the
Galois system [114].

First and foremost, our program code classification (or algorithm classifica-
tion) should help us address the discussed programmability issues: it needs to
be suitable for our compiler-based approach. Still, we also keep in mind that a
classification can also be a means to perform performance prediction or can be
used as vocabulary for programmers. These different goals are characterised as:

• An algorithm classification can be seen as a way to facilitate the design
and improve the quality of compilers. For example, a compiler can include

31

Chapter 3. Classifications of program code

an optimisation or transformation pass which is known to be suitable for
a specific class of code. By feeding class information directly into compil-
ers, their design can be focused on transformation and optimisation passes
rather than analysis. The code analysis (extracting the classes) will still be
required, but can now be cut-out and performed in a single common place,
shared among many compilers. The extraction of classes should remain au-
tomated where possible, but should also have a manual or interactive mode
such that programmers can feed additional information to the compiler.

• A classification can also be used for performance prediction, i.e. giving an
estimate of the performance of program code on a specific microprocessor.
An example of a performance model based on program code classes is the
‘boat hull model’ [11]. Since performance prediction is not the primary goal
of this thesis, this topic is not further discussed. Still, we keep the goal in our
mind, as it broadens the scope of applicability of an algorithm classification.

• An algorithm classification can also be a means for programmers to com-
municate and learn design patterns. For example, programmers can identify
problems common to code of the same class, identify potential parallelism,
or apply known design patterns and optimisation techniques. Furthermore,
we also see an algorithm classification as a way to facilitate communication
among programmers, presenting them with a common idiom in which they
can describe their computational problems.

Having described the goals of classifications, five requirements are identified
that need to be met in order to achieve these goals. The requirements are:

1. Classes should be extracted automatically from program code where
possible. If they are not automatically extracted, the compilation process
will involve manual work. Ultimately, this is not desirable, since the iden-
tification of classes can be error prone and places a heavy burden upon
programmers, decreasing programmability.

2. A classification must be intuitive and easy to understand. Although classes
could be extracted automatically, we also envisage a classification to be used
manually: 1) as design patterns for programmers, and 2) for further man-
ual classification or fine-tuning, e.g. the programmer might have additional
information about input data ranges. Therefore, an easy to learn and de-
scriptive algorithm classification is required.

3. We require algorithm classes to be formally defined, i.e. code belongs
to a certain class if and only if a set of formal properties hold. Such a
definition allows guarantees to be set on correctness, allows programmers to
fully understand properties of classes, and facilitates automatic extraction
of classes from program code.

32

3.0.

4. An algorithm classification must be complete within set boundaries, i.e.
a single algorithm should belong to at least one predefined class (possibly
more than one if the classes overlap).

5. Classes must be fine-grained, capturing low-level algorithm details. Al-
though a finer granularity is preferable, it must not come at the cost of the
other requirements. We therefore require classes to include the most impor-
tant aspects for performance, i.e. the structure and amount of parallelism,
and information on data reuse and locality.

With the requirements set, an extensive survey of different types of exist-
ing algorithm classifications is performed (see section 3.1). However, a suitable
classification for our purposes was not found. Therefore, our own program code
classifications have been developed, of which figure 3.1 gives an overview. The
figure shows that our first classification (A , see [17] and [12]) was inspired by
classifications used for compilers based on ‘algorithmic skeletons’, most notably
the work by Caarls et al. [39]. This initial classification was formalised in the
work on ‘algorithmic species’ (B), by basing it on the polyhedral model, a mathe-
matical representation of program code. Next, the underlying theory was revised
to support a wider range of program code. The resulting updated version of algo-
rithmic species (C) is based on array reference characterisations. Finally, based
on the same theory, the granularity of algorithmic species is altered to obtain the
finer-grained species+ classification (D).

array reference-based theory

polyhedral model-based theory

algorithmic
species

SPECIES+

algorithmic
species

non-formal
classification

ti
m

e

A

B

C
D

2011

2012

2013

existing algorithmic
skeleton classifications

Figure 3.1: A time-line of the algorithm classifications: A an earlier non-formalised classifi-

cation inspired by algorithmic skeletons, B polyhedral-model based ‘algorithmic species’, C

array reference-based ‘algorithmic species’, and D the more fine-grained species+.

33

Chapter 3. Classifications of program code

This thesis discusses the three most recent versions of our algorithm classifica-
tions (B , C and D in figure 3.1). The reason to discuss multiple classifications
is twofold: 1) they each have their own advantages and disadvantages, and 2) their
succession illustrates some of the design choices made. The original algorithmic
species theory is discussed in section 3.2, the revised theory in section 3.3 and the
finer-grained species+ in section 3.4. However, before all this, let us take a look
at existing algorithm classifications first.

3.1 A survey of algorithm classifications

With the goals and requirements for an algorithm classification set, we will look at
existing algorithm classifications and discuss whether they meet our requirements
(although they might have different goals).

Algorithm classifications have been designed in the past for many different
purposes, which has resulted in a large body of existing work with many different
properties. This work is grouped in four categories, ranging from high abstraction-
level classifications (loosely coupled to program code) to low abstraction-level
classifications (tightly coupled to program code). The following categories are
identified, listed from high to low abstraction-level:

1. High abstraction-level classifications, such as the Berkeley motifs [23], pat-
tern languages [87, 97, 98], and the Galois system [114].

2. Algorithmic skeletons [44] and related classifications, such as classical skele-
tons [41], contemporary skeletons [40, 55], and idioms [42].

3. Classifications based on directives or pragma’s, typically tightly coupled to
program code. Examples are the OpenACC and OmpSs directives.

4. Mathematical representations of code, such as Æcute [77], array regions [46],
the polyhedral model [59], and the SUIF loop transformations [145].

The following sections discuss the most prominent work of each category, eval-
uating the goals and requirements. A number of classifications is also illustrated
based on two running examples: matrix-vector multiplication (shown in figure 3.2)
and a 2D Jacobi stencil computation (shown in figure 3.3). Table 3.1 and sec-
tion 3.1.5 provide a summary of our findings. In this section, italics are used
when introducing classification names and ‘quotes’ for class names.

3.1.1 High abstraction-level classifications

The 13 motifs (originally named dwarfs) from Berkeley [23] are an example of
high abstraction-level classifications. Motifs are introduced as algorithmic meth-
ods to capture patterns of computation and communication. When classifying the
two examples, we find that matrix-vector multiplication (figure 3.2) fits the ‘dense

34

3.1. A survey of algorithm classifications

1 for (i =0; i<N; i++) {
2 r [i] = 0 ;
3 for (j =0; j<N; j++) {
4 r [i] += M[i] [j] ∗ v [j] ;
5 }
6 }

Figure 3.2: Matrix-vector multiplication
(~r = M · ~v).

1 for (i =1; i<N−1; i++) {
2 for (j =1; j<N−1; j++) {
3 M[i] [j] = 0 .2 ∗ (A[i] [j]
4 + A[i −1] [j] + A[i] [j +1]
5 + A[i +1] [j] + A[i] [j −1]) ;
6 }
7 }

Figure 3.3: A 2D Jacobi stencil computation.

linear algebra’ motif, which is characterised by computations on dense matrices or
vectors. The stencil computation of figure 3.3 is classified under the ‘structured
grids’ motif. Motifs are intended to be used for manual, high abstraction-level
classification, yielding a coarse-grained intuitive classification, but lacking auto-
mated extraction, a formal definition, or a completeness guarantee.

Related to motifs is the work on pattern languages for parallelism [87, 97, 98].
Pattern languages are intended to guide programmers by providing descriptions
of frequently occurring problems. They typically provide patterns at multiple
levels, but often start at a high abstraction-level. An example is the pattern lan-
guage OPL [87, 98] that uses motifs (named computational patterns in OPL) as a
first classification step. A second step involves structural patterns, describing the
interaction of computational patterns. Assuming that the output matrix M from
the stencil computation (figure 3.3) is used as input to the matrix-vector multi-
plication (figure 3.2), the sequence of examples can be classified as a ‘pipe-and-
filter’ structural pattern. The pattern language furthermore provides patterns for
parallel programming at different abstraction levels (i.e. algorithm/implementa-
tion/execution). Both our examples use the ‘data parallelism’ algorithm strategy,
the ‘loop parallelism’ implementation strategy, and the ‘SIMD’ parallel execution
pattern. Although more detailed than motifs, OPL is still intended for manual
classification purposes, making it unsuitable for our primary goal.

The Galois system [114] provides another high abstraction-level classification
for manual uses. In contrast to other classifications, Galois is focused entirely on
the classification of irregular algorithms (e.g. data dependent memory accesses or
graph structures), making it orthogonal to our work.

3.1.2 Algorithmic skeletons and related classifications

Work on algorithmic skeletons [44] has led to a large number of algorithm clas-
sifications. A summary of classical skeletons is found in a skeleton survey [41],
listing skeletons such as ‘farm’, ‘pipe’, ‘fork-join’, ‘divide and conquer’, ‘client-
server’, and ‘zip’. This survey of common algorithmic skeletons concludes with
a general classification, capturing many skeletons from existing work. This clas-
sification is used to evaluate the examples. In the matrix-vector multiplication
(figure 3.2), each computation M[i][j] * v[j] results in a partial result of a

35

Chapter 3. Classifications of program code

single element of vector ~r, requiring recombination. This fits the ‘recursively par-
titioned’ or ‘divide-and-conquer’ skeleton. The stencil computation (figure 3.3)
computes a result directly, making it fit the ‘task queue’ or ‘farm’ skeleton. Such
classical skeletons are very intuitive, but provide no automation, no completeness
guarantees, no formal definition, and are too coarse-grained to meet our goals.

Recent contemporary skeleton work [40, 55] uses lower abstraction-level clas-
sifications. Example skeletons are ‘map’, ‘reduce’, ‘map-reduce’, ‘map-overlap’,
and ‘map-array’ [55] or ‘pixel-to-pixel’, ‘neighbourhood-to-pixel’, ‘pixel-to-global’,
and ‘bucket processing’ [40]. Related to this contemporary skeleton work are id-
ioms [42], a classification system defining 6 classes: ‘stream’, ‘transpose’, ‘gather’,
‘scatter’, ‘reduction’, and ‘stencil’. When classifying the examples using contem-
porary skeletons and idioms, following results are found: the 2D Jacobi sten-
cil computation of figure 3.3 classifies as ‘map-overlap’ [55], ‘neighbourhood-to-
pixel’ [40], or as the equivalent ‘stencil’ [42]. However, these three classification
techniques are unable to classify the full matrix-vector multiplication example,
although the example can still be classified partially: the computation in the
inner-loop j can be classified as ‘reduce’ [55], ‘scalar reduction’ [40] or ‘reduc-
tion’ [42]. Compared to classical skeletons, contemporary skeletons and idioms
are already a better fit for our goals: they are formally defined in some cases
(e.g. [40]), and occasionally provide tools for automation (e.g. [42]). Nevertheless,
we cannot identify a single skeleton classification which fulfils all requirements,
lacking aspects such as completeness and a fine granularity.

3.1.3 Directive-based classifications

Compiler directives such as OpenACC and OmpSs are tightly coupled to program
code. Although directives are not strictly considered algorithm classifications,
they do have the possibility to capture information of program code. OpenACC
for example is used by various compilers to specify regions of code to be offloaded
to accelerators. It is used by the PGI Accelerator [146] and HMPPWorkbench [52]
compilers. As more OpenACC directives are added to program code, an increasing
amount of information will become available to the compiler. For example, pre-
fixing ‘#pragma acc parallel loop’ to both examples (figures 3.2 and 3.3)
will already set a specific ‘class’. We conclude that directives, although related
to algorithm classifications, are missing a real notion and definition of classes.
Furthermore, they lack properties such as automated extraction.

3.1.4 Mathematical code representations

The final group of classifications do not introduce algorithm classes as such, but
rather give a mathematical representation of algorithm code. Such mathemat-
ical representations typically work on loop nests and represent aspects such as
iteration spaces, reuse distances, loop dependences and data locality in a mathe-
matical formulation. Examples are Æcute [77], array regions [46], the polyhedral

36

3.1. A survey of algorithm classifications

model [59], and the SUIF loop transformation formulation [145]. These formula-
tions or models are often used for transformations such as loop tiling and skewing.

Æcute, a decoupled access/execute specification [77], is an algorithm classifi-
cation that uses a mathematical formulation. It has been used successfully in sev-
eral works (e.g. [30, 101]). The specification contains a description of the iteration
space I, a precedence relationship R to set the order of execution, a partition P

to indicate sets of iterations preferably executed on a single processing element,
and a set of memory locations that may be read (Mr) or written (Mw) for a given
iteration. The Æcute specifications for the two examples in figures 3.2 and 3.3 are
shown in equations 3.1 and 3.2 respectively. For similar examples and a detailed
explanation we refer to [77]. Although Æcute provides a fine-grained, complete,
and formally defined classification, it is currently not automated, and less intu-
itive compared to classifications with a higher abstraction-level. Furthermore, the
formulation of the partition P requires knowledge of the target platform, making
its identification less straightforward and, more importantly, not portable across
different microprocessors.

I = {(i, j) : 0 ≤ i < N, 0 ≤ j < N}

R = {((i, j), (i, k)) : 0 ≤ i < N, 0 ≤ j < k < N}

P = {{(i, j) ∈ I : a(k − 1) ≤ i < ak, b(l − 1) ≤ j < bl} :

1 ≤ k <
N

a
, 1 ≤ l <

N

b

}

Mr(i, j) = {M [i][j], v[j] : (i, j) ∈ I}

Mw(i, j) = {r[i] : (i) ∈ I}

(3.1)

I = {(i, j) : 1 ≤ i < N − 1, 1 ≤ j < N − 1}

R = ∅

P = {{(i, j) ∈ I : a(x− 1) ≤ i− 1 < ax, b(y − 1) ≤ j − 1 < by} :

1 ≤ x <
N − 2

a
, 1 ≤ y <

N − 2

b

}

Mr(i, j) = {A[i+ x][j + y] : (i, j) ∈ I,−1 ≤ x, y ≤ 1}

Mw(i, j) = {M [i][j] : (i, j) ∈ I}

(3.2)

The polyhedral model, another example of a mathematical code represen-
tation, captures the iteration space (similar to Æcute’s I), the array references
(similar to Æcute’s M), and the iteration ordering (similar to Æcute’s R) of static
affine loop nests, i.e. loops with affine array accesses and static and affine loop
control. For our examples, we discuss only the iteration space in the form of the
domain description D and the array references in the form of the access function
f . For brevity, we only show the domain description for the inner-loops and give

37

Chapter 3. Classifications of program code

f only for the access M[i][j] in line 4 of figure 3.2 and for A[i][j-1] in line
5 of figure 3.3. Detailed descriptions for these examples can be found in sec-
tion 3.2.1 and in [115]. The resulting expressions are equations 3.3 (matrix-vector
multiplication) and 3.4 (stencil computation).

D = {(i, j) | 0 ≤ i, j < N} f(i, j) =

[

1 0 0 0
0 1 0 0

]

·

i

j

N

1

=

(

i

j

)

(3.3)

D = {(i, j) | 0 ≤ i, j < N} f(i, j) =

[

1 0 0 0
0 1 0 −1

]

·

i

j

N

1

=

(

i

j − 1

)

(3.4)

Although it is not strictly an algorithm classification, the polyhedral model
does satisfy many of our requirements. It provides automatic extraction from
source code, guarantees completeness within pre-defined bounds, obtains the
finest granularity possible (it captures all information from the original code),
and has a formal base. However, due to the nature of the polyhedral model (or
other mathematical code representations for that matter), there is no real notion
of classes, making it unsuitable in its current form to directly fulfil our goals.

3.1.5 Evaluation of existing classifications

The results of the classification of the examples are evaluated for different classi-
fications1. This is done by assessment with respect to the requirements defined
at the beginning of this chapter: classes are required to be 1) automatically ex-
tracted, 2) intuitive, 3) formally defined, 4) complete, and 5) fine-grained. The
results of the classification of the examples is given in the second and third col-
umn of table 3.1, the requirements are evaluated in the remaining columns. The
evaluation for the existing classifications is discussed per requirement:

1. Two classifications are identified that do provide automatic extraction
of classes from program code. This includes an idiom recogniser [42] and
several polyhedral model extraction tools, e.g. pet [140]. The reason that
most classifications do not provide such tools can be found in the fact that
the classes are either not formally defined or are too abstract, making the
design of such a tool challenging or even impossible.

2. A large number of classifications, including motifs, pattern languages and
skeletons, use descriptive vocabulary as class names. This makes the clas-
sification intuitive and easy to understand for manual uses. In contrast,

1Although Æcute and the polyhedral model are not strictly classifications with individual classes,
we do use these notations here to improve readability.

38

3.1. A survey of algorithm classifications

n
a
m
e

ex
a
m
p
le

cl
a
ss

a
u
to
m
a
ti
c

in
tu

it
iv
e

fo
rm

a
l
d
ef
.

co
m
p
le
te

g
ra
n
u
la
ri
ty

motifs
1) Dense linear algebra

× X × ×
very

2) Structured grids coarse

OPL
1) Dense linear algebra, data/loop, SIMD

× X × × coarse
2) Structured grids, data/loop, SIMD

skeletons
1) Recursive partitioned or D&C

× X × × coarse
2) Task queue or farm

Enmyren 1) Partial: reduce
× X × × average

et al. 2) Map-overlap
Caarls 1) Partial: scalar reduction

× X X × average
et al. 2) Neighbourhood to pixel

idioms
1) Partial: reduction

X X × × average
2) Stencil

Æcute
1) See equation 3.1

× × X X
very

2) See equation 3.2 fine
polyhedral 1) See equation 3.3

X × X X
very

model 2) See equation 3.4 fine

Table 3.1: Overview of the survey of algorithm classifications. The leftmost columns show the
classes for each classification for the two examples of figures 3.2 and 3.3. The rightmost columns
show the evaluation of the set requirements for each classification.

the mathematical descriptions provided by Æcute and the polyhedral model
are less suited to fulfil goals for which higher abstraction-level classifications
(such as motifs, pattern languages, and skeleton classifications) were intro-
duced. The polyhedral model, due to the lack of a notion of classes, will
for example not be directly applicable to tasks requiring an intuitive and
compact class description, e.g. manual classification or design patterns for
programmers.

3. A single skeleton classification, the Æcute classification and the polyhedral
model provide formal definitions of classes. The other classifications rely
on textual descriptions and examples that could lead to errors, ambiguity,
and lack of clarity.

4. Classifications such as pattern languages and algorithmic skeletons are of-
ten not complete. They can be extended with new classes as they evolve,
but might still be unable to classify certain algorithms. In contrast, clas-
sifications using a mathematical description are complete, at least within
pre-defined boundaries. For example, the polyhedral model will be able to
generate a domain description, access description, and iteration schedule for
every static affine loop nest.

5. The granularity of classifications increases gradually as they become less
abstract and closer to program code. On one end are the motifs, grouping

39

Chapter 3. Classifications of program code

algorithms into 13 abstract classes. On the other end are mathematical loop
representations, describing data accesses and loop iterations in detail.

We have seen a large spectrum of classification techniques, each with their
own benefits. However, none of the discussed classifications satisfies all require-
ments. Mathematical representations of program code such as Æcute and the
polyhedral model come close, but lack a real notion of classes and thus fall short
on intuitiveness, compactness, and ease of understanding. Other classifications
such as skeletons or idioms do provide a descriptive classification, but fall short
on automation, granularity, and completeness. We therefore conclude that a new
classification is required to fulfil our requirements (and to meet the goals).

3.2 Algorithmic species

The previous section has shown that no existing algorithm classification fulfils all
our requirements. This section therefore introduces a new classification: ‘algo-
rithmic species’. Algorithmic species2 is a mathematically defined classification
targeted at the earlier mentioned goals that builds upon the polyhedral model [59].
The classification defines classes (or: ‘species’) at a low abstraction-level, classi-
fying array references and parallelism of (nested) static affine loops. The classes
themselves are inspired by our earlier work [12] and [17], and by classifications
used by compilers based on algorithmic skeletons [40, 55].

Prior to introducing the theory behind algorithmic species (section 3.2.2), we
introduce several species informally by classifying the code examples of figures 3.4–
3.8. In the figures on the right hand side of the code, different colours denote
different iterations of the i-loop.

1 for (i =0; i <64; i++) {
2 for (j =0; j <128; j++) {
3 R[i] [j] = 2 ∗ M[i] [j] ;
4 }
5 }

0 127

0

63

0

63

0 127

0

63

0

63

→

→

M R

M[0:63,0:127]|element → R[0:63,0:127]|element

Figure 3.4: An embarrassingly parallel algorithm (left), an illustration of the first two i-loop
iterations (right), and its algorithmic species w.r.t. the i-loop (bottom).

Figure 3.4 gives an example of a loop nest for which all loop iterations can be
executed in any order while maintaining correctness. In the body of this example

2Algorithmic species (or ‘species’ in short) is both used as the name of the classification as well
as to describe individual classes. Note that ‘species’ is both the plural and the singular form.

40

3.2. Algorithmic species

a single element from array M is read. After multiplying by 2, a single resulting
element of array R is produced. Both arrays are accessed from indices 0 to 63 in
the first dimension and from 0 to 127 in the second dimension. When this data
is combined with the names of the arrays, the result as shown in the bottom of
the figure is obtained. This result can be interpreted as: on every iteration of the
first dimension (0 to 63) and second dimension (0 to 127) a different element is
needed from the input array M to produce a different element of the output R.

A second example covers the matrix-vector multiplication code found in fig-
ure 3.5 (equal to figure 3.2 apart from the loop bounds). Here, production of a
single element of r requires an entire row of array M and the complete array v.
These accesses are identified as: chunk for the row access of M and full for the
complete access of v. The resulting algorithmic species can be interpreted as: to
produce a single element out of the total 64 elements in r, the entire array v and
a chunk of data in the second dimension of M (a row) are needed.

1 for (i =0; i <64; i++) {
2 S : r [i] = 0 ;
3 for (j =0; j <128; j++) {
4 T: r [i] += M[i] [j] ∗ v [j] ;
5 }
6 }

0 127

0

63

0

63

0

127

0

127

0

63

0

63

+

+

→

→

M v r

M[0:63,0:127]|chunk(-,0:127) ∧ v[0:127]|full → r[0:63]|element

Figure 3.5: Matrix-vector multiplication, in essence equal to figure 3.2 (left), an illustration
of the first two i-loop iterations (right), and its algorithmic species w.r.t. the i-loop (bottom).

Next, let us take a look at the 1D stencil computation given in figure 3.6 (a
1D version of the 2D Jacobi stencil of figure 3.3). To produce a single element
of array m, a neighbourhood of 3 elements from a is needed. A chunk access and
a neighbourhood access differ from each other in the fact that the latter implies
overlap between subsequent iterations, as is the fact for the stencil example. The
full classification can be found in the bottom of the figure, in which the size of
the neighbourhood is also given: ranging from −1 to 1.

1 for (i =1; i <128−1; i++) {
2 m[i] = 0 .33 ∗ (a [i−1]+a [i]+a [i +1]) ;
3 }

0 127 0 127

→

→

a m

a[1:126]|neighbourhood(-1:1) → m[1:126]|element

Figure 3.6: A 1D version of the 2D Jacobi stencil computation from figure 3.3 (left), an
illustration of the first two i-loop iterations (right), and its algorithmic species (bottom).

In the reduction example of figure 3.7, we can see that for every input element

41

Chapter 3. Classifications of program code

of arrays a and b a contribution to the result r is made. Since this is only a partial
contribution, the result is denoted as shared. The classification also captures the
offset access to array b by specifying the range 2–9.

1 for (i =0; i <8; i++) {
2 r [0] += a [i] + b [i +2] ;
3 }

0 2 7 9 →

a

b

r

a[0:7]|element ∧ b[2:9]|element → r[0:0]|shared

Figure 3.7: An example of a reduction to a scalar value (left), an illustration of all 8 i-loop
iterations (right), and its algorithmic species (bottom).

Finally, the example of figure 3.8 is classified. In this example, a 2x2 tile
from M is required to produce a single output in R. The tile is classified as a two-
dimensional chunk access, resulting in the classification as shown in the figure.

1 for (i =0; i <2; i++) {
2 for (j =0; j <2; j++) {
3 R[i] [j] = M[2∗ i] [2 ∗ j] +
4 M[2∗ i +1] [2∗ j] +
5 M[2∗ i] [2 ∗ j +1] +
6 M[2∗ i +1] [2∗ j +1] ;
7 }
8 }

0 3

0

3

0 1

0

1

→

M R

M[0:3,0:3]|chunk(0:1,0:1) → R[0:1,0:1]|element

Figure 3.8: An example of a 2D chunk access (left), an illustration of all 4 i-loop iterations
(right), and its algorithmic species w.r.t. the i-loop (bottom).

3.2.1 Background: the polyhedral model

The polyhedral model [59] is a popular framework to perform code optimisations
and parallelisation. It allows program code (most notably loop nests) to be repre-
sented as algebraic expressions, capturing the iteration spaces of loops, the array
references, and the execution schedules. The strength of the polyhedral model
is the availability of powerful transformations and analysis passes that can be
applied to the program code’s algebraic representations. Examples of transfor-
mations include loop tiling, skewing, re-ordering and fusion [115].

Because the polyhedral model is an abstract model, it is not able to represent
all types of program code exactly: its algebraic expressions are an abstract rep-
resentation to which restrictions apply, supporting only ‘static affine loop nests’.
Static affine loop nests are loop nests for which: 1) loop control is static, 2) loop
bounds are affine combinations of constants and static variables3, 3) conditional

3Static variables are variables that remain constant throughout the execution of the loop.

42

3.2. Algorithmic species

statements are affine combinations of constants, loop variables and static vari-
ables, and 4) array references are affine combinations of constants, loop variables
and static variables.

The polyhedral model is used as a basis to construct a formal theory for algo-
rithmic species. This model is suitable because it gives us a strong formal basis and
is (like our classification) focussed on loop nests in program code. Furthermore,
there are already tools available to extract a polyhedral representation from pro-
gram code (e.g. pet [140]). For our purposes, we use only the polyhedral’s domain
descriptions, capturing the iteration space, and its access functions, capturing the
array references. Therefore, this section illustrates these domain descriptions D
and access functions f , using matrix-vector multiplication as an example.

In the matrix-vector multiplication example (figure 3.5) two statements are
identified: S in line 2 and T in line 4. For the statement S, the domain DS is
described as {i | 0 ≤ i ≤ 63}, which can be written in homogeneous coordinates
as shown in equation 3.5. The array reference to array r in this statement is
expressed as r[f(~tS)], for which ~tS is a vector4 containing the loop iterators at
statement S, any loop bound variables, and the constant 1. The access function
f(~tS) for this reference is given in equation 3.6.

DS = DS · ~tS =

[

1 0
−1 63

]

·

(

i

1

)

≥ ~0 (3.5)

f(~tS) = FS,r · ~tS =
[

1 0
]

·

(

i

1

)

= (i) (3.6)

Similar to statement S, the domain description DT can be described for state-
ment T as {(i, j) | 0 ≤ i ≤ 63 ∧ 0 ≤ j ≤ 127} or as shown in equation 3.7.
Furthermore, the reference to array M[f(~tT)] can be described as shown in equa-
tion 3.8. For the reference to array M a vector of length 2 is obtained, correspond-
ing to the two-dimensional reference to array M in statement T . For brevity, the
access functions for arrays r and v in statement T are omitted.

DT = DT · ~tT =

1 0 0
−1 0 63
0 1 0
0 −1 127

·

i

j

1

 ≥ ~0 (3.7)

f(~tT) = FT,M · ~tT =

[

1 0 0
0 1 0

]

·

i

j

1

 =

(

i

j

)

(3.8)

Next, we discuss the references to another array M of an earlier example: the
embarrassingly parallel program of figure 3.4. When the polyhedral model’s do-
main description and access function are derived for the reference to M in this

4Although the vector ~t is typically named ~x in polyhedral representations, we use this notation
to prevent confusion with a vector ~x introduced as part of algorithmic species. Similarly, DS is
used rather than AS for the domain descriptions.

43

Chapter 3. Classifications of program code

example, we observe that they are equal to those found for the matrix-vector
multiplication example: equations 3.7 and 3.8. In other words, because the refer-
ence M[i][j] uses the same indices in both examples and the loop bounds are
equal, the polyhedral model describes both references equally.

When evaluating these results with respect to the algorithmic species clas-
sifications of figures 3.4 and 3.5, we observe that the references to array M are
classified distinctly: either as element or as chunk. The reason for a distin-
guished classification can be found in the fact that references to array r in the
matrix-vector multiplication of figure 3.5 impose data dependences, limiting the
parallelism in M. The polyhedral model does not expose this directly, because its
access functions describe individual array references in isolation of others, whereas
algorithmic species describes the references in relation to the entire loop nest. To
be able to distinguish between the references to array M in these examples, a new
representation of array references is introduced to formalise algorithmic species.

3.2.2 Polyhedral model-based algorithmic species

This section describes the polyhedral model-based theory of algorithmic species.
The goal of this theory is to formally define the algorithmic species belonging to
a given piece of code. As we have seen in the illustrating example, algorithmic
species (or ‘species’ for short) are constructed from a combination of descriptive
keywords called ‘array access patterns’5. A total of 5 patterns are introduced,
namely element, chunk, neighbourhood, shared and full. These access patterns are
applied to individual array references, combining them will yield an algorithmic
species, typically covering a complete loop nest. Key to our approach is using
access patterns as building blocks, which allows us to form many different species
using only a very limited set of access patterns.

Earlier, section 3.2.1 argued that the access functions provided by the polyhe-
dral model do not directly lead to access patterns: two examples with the same
access functions had different access patterns because of loop-iteration depen-
dences. Therefore, we begin describing the species theory by defining different
loop types and a different notation for access functions and domain descriptions.

Base loops and structure loops

The vector ~t as used in the polyhedral model is split to obtain two types of
loops: base loops (~x) and structure loops (~y). Intuitively, structure loops can
be seen as inner-loops distorting a one-to-one reference-to-iteration mapping of
arrays in the outer base-loops, creating accesses of structures (e.g. rows, columns,
tiles or neighbourhoods). After constructing a species (when the parallelisation
requirements are met), base loops are loops containing iterations that can be

5Note that we do not use the word ‘patterns’ in ‘array access patterns’ to imply a relation with
patterns in pattern languages.

44

3.2. Algorithmic species

safely executed in parallel on a shared memory microprocessor. In the matrix-
vector multiplication example (figure 3.5), the j-loop is an example of a structure
loop and the i-loop is an example of a base loop.

More formally, a structure loop is defined as a loop with at least one read
and write containing either: 1) a read that is dependent on the loop iterator (i.e.
occurs in the index expression) while all its writes are not, or 2), a write that is
dependent on the loop iterator while all its reads are not. All other loops which
contain at least an array reference are considered base loops. A procedure to
derive this is given in algorithm 3.1.

ALGORITHM 3.1: Algorithm to derive base loops and structure loops.

Input: Polyhedral description of all statements S in the loop body
Output: Base loop vector ~x and structure loop vector ~y

1 ~x = ∅; ~y = ∅
2 for each statement S in S do

3 ~t′S ← ~tS without constants

4 n = length(~t′S)
5 for all array references a in S do

6 F′

S,a ← the first n columns of FS,a

7 end

8
~RS ← projection of F′

S,a into a row vector, for which a are reads

9
~WS ← projection of F′

S,a into a row vector, for which a are writes

10 if ~RS = ~0 or ~WS = ~0 then

11 continue;
12 end

13 for i in [0 : n− 1] do
14 if (RS,i 6= 0 and WS,i = 0) or (RS,i = 0 and WS,i 6= 0) then

15 ~y ← ~y
⋃

~tS,i
16 end

17 end

18 ~x← ~x
⋃

(~tS
⋂

~y)

19 end

Result: ~x, ~y

The matrix-vector multiplication example (figure 3.5) is used to illustrate algo-

rithm 3.1. First, the modified vectors ~t′ are constructed by removing any constants
from ~t and update the access matrices F accordingly, creating F′. The results for
statements S and T of the matrix-vector multiplication (figure 3.5) are shown in
equations 3.9 (for S) and 3.10 (for T).

~t′S =
(

i
)

, F′S,r =
[

1
]

(3.9)

~t′T =

(

i

j

)

, F′T,r =
[

1 0
]

, F′T,M =

[

1 0
0 1

]

, F′T,v =
[

0 1
]

(3.10)

45

Chapter 3. Classifications of program code

Since statement S does not have any reads, no structure loops can be derived
from S. As for statement T , we can proceed with algorithm 3.1 and construct the
vectors ~RT and ~WT . They are constructed by accumulating all values per column
(projection) of all F′T,a matrices for which a is a read (~RT) or a write (~WT). The
results are shown in equation 3.11.

~RT =
(

1 1
)

+
(

0 1
)

=
(

1 2
)

, ~WT =
(

1 0
)

(3.11)

When we look at the loop iterator i, and thus at the first column of ~RT and
~WT , we see no values equal to zero (RT,0 = WT,0 = 1). However, when looking at
the second loop iterator j, we can find a read that is dependent on the loop iterator
(RT,1 6= 0) while all writes are independent (WT,1 = 0). Thus, j is identified as a
structure loop. Therefore, ~x = (i) and ~y = (j) is the result of algorithm 3.1 for
the matrix-vector multiplication example.

Domain descriptions and access functions

Now that base loops have been distinguished from structure loops, the polyhedral
model’s iteration domainsD and access functions f(~t) are modified. In the original
description, the domain description D and the access function f(~t) are given in
the form of D ·~t and F ·~t respectively. Because the vector ~t is split into ~x, ~y and
a separate constant vector, a new definition of domain descriptions and access
functions is required. These new descriptions will allow us to directly determine
which of our 5 access patterns corresponds to a given array reference.

Because the loop iterators are split into two vectors, the domain descriptions
are also split into two parts: one part describes the domain imposed by the base
loops (Dx) and another part describes the domain imposed by the structure loops
(Dy). To illustrate this, statement T of the matrix-vector multiplication code (see
figure 3.5) is taken as an example. The domain description in the polyhedral model
of our example (equation 3.7) are split into two new descriptions (equation 3.12).

Dx,T =

[

1 0
−1 63

]

·

(

i

1

)

≥ ~0 Dy,T =

[

1 0
−1 127

]

·

(

j

1

)

≥ ~0 (3.12)

Next, the polyhedral model’s access functions f(~t) are changed. Two new
matrices are introduced: A represents the relation between the array indices and
the base loop iterators ~x, while B gives the relation between the array indices
and the structure loop iterators ~y. Additionally, ~c is introduced to set a constant
offset. Together, this creates an access function ~I as shown in equation 3.13
capturing the array index, written as ~Ia for array reference a. Note that in this
access function the loop iterators ~x and ~y are valid for an entire loop body instead
of for an individual statement as is done for ~t in the polyhedral model.

~Ia = Aa · ~x+Ba · ~y + ~ca (3.13)

46

3.2. Algorithmic species

To illustrate the new access function, we show examples for statement T of
the matrix-vector multiplication (figure 3.5). We show the accesses to arrays r
(equation 3.14), M (equation 3.15) and v (equation 3.16). In this example, we see
that the accesses to arrays r and v are one-dimensional (matrices with a single
row), while the reference to array M is two-dimensional (matrices with two rows).

Ar =
[

1
]

, Br =
[

0
]

, ~cr =
(

0
)

, ~Ir =
[

1
]

· ~x+
[

0
]

· ~y +
(

0
)

= (i) (3.14)

AM =

[

1
0

]

, BM =

[

0
1

]

, ~cM =

(

0
0

)

, ~IM =

[

1
0

]

·~x+

[

0
1

]

·~y+

(

0
0

)

=

(

i

j

)

(3.15)

Av =
[

0
]

, Bv =
[

1
]

, ~cv =
(

0
)

, ~Iv =
[

0
]

· ~x+
[

1
]

· ~y +
(

0
)

= (j) (3.16)

With the new access function defined, the problem of distinguishing the array
references of the matrices M in the examples of figures 3.4 and 3.5 is re-evaluated.
Although the indices are the same for both examples (M[i][j]) and the poly-
hedral model gives the same description, the new access function does give a
distinguishing description. The access function for array M in the matrix-vector
multiplication example (figure 3.5) was already given in equation 3.15, while the
access function for array M in the example of figure 3.4 is given in equation 3.17.
The difference in representation is a result of the fact that ~x contains both loop
iterators for the example of figure 3.4, but only the outer loop iterator for the
matrix-multiplication example.

AM =

[

1 0
0 1

]

, BM = ~cM =

[

0
0

]

, ~IM =

[

1 0
0 1

]

·~x+

[

0
0

]

·~y+

(

0
0

)

=

(

i

j

)

(3.17)

Now, when the descriptions for array M in equations 3.15 and 3.17 are com-
pared, different matrices A and B are found, allowing to distinguish between the
element and chunk patterns. Next, it is shown how the matrices A and B are
used to derive access patterns.

Deriving the access patterns

The total of five access patterns can be derived based on the domain descriptions
and access functions. The patterns are given descriptive names to create an
intuitive and easy to understand classification. Algorithm 3.2 formally defines
these patterns based on the earlier defined matrices A and B and the domain
descriptions (Dx, Dy) for a given array reference in a given statement. Intuitively,
the algorithm defines the element pattern as references only dependent on base
loops, the full pattern as references only dependent on structure loops, the chunk

47

Chapter 3. Classifications of program code

and neighbourhood patterns as references dependent on both types of loops6, and
the shared pattern as references independent of both base loops and structure
loops. In other words, the patterns cover all four permutations of dependences
on the two loop types. The additional fifth pattern is the result of the distinction
between overlap among iterations for the neighbourhood and chunk patterns. In
contrast to the chunk pattern, the neighbourhood pattern does allow (partial)
overlap of array references among different iterations. Partial overlap is defined
to exist when equation 3.18 holds.

∃(~x1, ~y1), (~x2, ~y2) such that Aa · ~x1 +Ba · ~y1 = Aa · ~x2 +Ba · ~y2,

with (~x1 6= ~x2 ∨ ~y1 6= ~y2) and (~x1, ~x2) ∈ Dx,S and (~y1, ~y2) ∈ Dy,S

(3.18)

ALGORITHM 3.2: Algorithm to derive the access patterns for an array.

Input: Access description matrices (Aa, Ba) and domain descriptions (Dx,S ,
Dy,S) for array reference a in statement S

Output: Access pattern Pa for array reference a

1 if (Ba = 0) then
2 if (Aa = 0) then
3 Pa ← “shared”
4 else

5 Pa ← “element”
6 end

7 else

8 if (Aa = 0) then
9 Pa ← “full”

10 else if (equation 3.18 holds, i.e. there is partial overlap) then

11 Pa ← “neighbourhood”
12 else

13 Pa ← “chunk”
14 end

15 end

Result: Pa

The algorithmic species’ access patterns allow base loops to be safely exe-
cuted in any order, or even in parallel on a shared memory microprocessor. How-
ever, algorithm 3.2 does not include a check for dependences between iterations
of base loops. Therefore, array references are further required to have no self-
dependences. Self-dependences can exist within a single statement (e.g. A[i+1]
= A[i]) or among different statements in a loop. Allen and Kennedy [19] state
that, when there are no self-dependences, loops can be vectorised or parallelised.
Their theory can be applied to species: no single array element is allowed to be

6Note that structure loops might be formed from manually unrolled ‘loops’ such as the accesses
to array a in figure 3.6. This will be further discussed in section 3.2.3.

48

3.2. Algorithmic species

read (~Ia,r) and written (~Ia,w) or written twice in different base loop iterations.
This is described formally in equation 3.19, which only holds if there are no de-
pendences. Section 3.2.3 discusses implementation of this equation.

∄(~Ia,r(~x1, ~y1) = ~Ia,w(~x2, ~y2)) and ∄(~Ia,w(~x1, ~y1) = ~Ia,w(~x2, ~y2)),

with (~x1 6= ~x2 ∨ ~y1 6= ~y2) and (~x1, ~x2) ∈ Dx,S and (~y1, ~y2) ∈ Dy,S

(3.19)

Deriving access ranges of algorithmic species

So far, we have described new domain descriptions and access functions, which
allowed us to define the algorithmic species’ access patterns. This section enriches
the species by including access ranges of the arrays as well as access ranges of the
chunk and neighbourhood patterns.

To calculate the range of a chunk or neighbourhood access, information is re-
quired from the domain of the structure loop Dy, the structure loop access matrix
B, and the constant offset vector ~c. The procedure to derive the structure range
is first illustrated step-by-step using statement T of the matrix-vector multiplica-
tion example (figure 3.5). The goal is to derive the access range and shape of the
chunk access pattern for array M, which is a 1 by 128 row access. The domain of
the structure loop is given in equation 3.20, with the loop bounds visible in the
last column of Dy,T . Due to the nature of the domain description, the value of
the lower bound in Dy is negated. This value is inverted using a helper matrix

Hinv. Furthermore, a helper vector ~h is introduced, allowing selection of the last
row. This allows the loop bounds to be found as shown in equation 3.21.

Dy,T = Dy,T ·

(

j

1

)

≥ ~0 with Dy,T =

[

1 0
−1 127

]

(3.20)

~h ·D⊤y,T ·Hinv =
(

0 1
)

·

[

1 −1
0 127

]

·

[

−1 0
0 1

]

=
(

0 127
)

(3.21)

To complete the access range calculation, we process the stride of the access
between successive structure loop iterations (B) and the access offset shifting the
range with a constant amount (~c). The computation of the access range of the
chunk pattern for array M in the example is shown in equation 3.22. The result
can be interpreted as follows: each row corresponds to a dimension in the array
reference, the first column denotes the start of the range, and the second the
end. The ranges as defined for chunk and neighbourhood patterns are given with
respect to the base loop iterators. As shown in equation 3.22 for the example,
array M is accessed as a chunk only in the second dimension (i.e. a row access),
ranging from 0 up to and including 127.

BM · (~h ·D
⊤
y,T ·Hinv)+

(

~cM ~cM
)

=

(

0
1

)

·
(

0 127
)

+

[

0 0
0 0

]

=

[

0 0
0 127

]

(3.22)

49

Chapter 3. Classifications of program code

Formally, the access ranges S of chunk and neighbourhood patterns are com-
puted as shown in equation 3.23. In this equation, Ba represents the array de-
scription for array a in statement S and Dy,S the domain description for S. The

helper ~h is a vector of length L+ 1 with a 1 in the last position and zeroes else-
where, where L is equal to the number of structure loop variables. The helper
Hinv is equal in size to D⊤y,S and formed of 2 by 2 diagonal matrices with -1 in
the top left corner and +1 in the bottom right corner, as shown in the example
of equation 3.21. Furthermore, Ca is a matrix with an equal number of columns
as D⊤y,S , each containing the ~ca vector.

Sa = Ba · (~h ·D
⊤
y,S ·Hinv) +Ca (3.23)

Finally, the access ranges R of the array references are discussed. The def-
initions and computations of access ranges are similar to those of the chunk or
neighbourhood ranges, with the only difference that both matrices (A and B)
and both domain descriptions (Dx and of Dy) are used. For example, the array
access ranges of the arrays r, M and s in figure 3.5 are computed as shown in
equations 3.24, 3.25, and 3.26 respectively.

Ar · (~h ·D
⊤
x,T ·Hinv) +Br · (~h ·D

⊤
y,T ·Hinv) +

[

~cr ~cr
]

=
[

0 63
]

(3.24)

AM · (~h ·D
⊤
x,T ·Hinv) +BM · (~h ·D

⊤
y,T ·Hinv) +

[

~cM ~cM
]

=

[

0 127
0 63

]

(3.25)

As · (~h ·D
⊤
x,T ·Hinv) +Bs · (~h ·D

⊤
y,T ·Hinv) +

[

~cs ~cs
]

=
[

0 127
]

(3.26)

Algorithmic species anatomy

With the access patterns and ranges defined, the complete algorithmic species
can be constructed. Arrays a accessed using the element, shared or full patterns
are constructed using the array name (Na), the access range (Ra), and the access
pattern (Pa). For the access patterns chunk and neighbourhood, the additional
structure range (Sa) is included. The syntax used is given in equation 3.27 for
both types.

Na[Ra] | Pa if Pa ∈ {element, shared, full}

Na[Ra] | Pa(Sa) if Pa ∈ {chunk, neighbourhood}
(3.27)

The individual access ranges (for both the arrays and the patterns) are con-
structed using commas (,) to separate dimensions and colons (:) to separate the
start and end of a range. To complete the algorithmic species, multiple arrays are

50

3.2. Algorithmic species

concatenated with a wedge (∧), while input and output arrays are separated by
an arrow (→).

Combining the described syntax, algorithmic species can be constructed as
shown for the earlier discussed examples. However, the algorithmic species clas-
sification can also be used to classify inner loops. An example is the inner loop
j (and its body) of the matrix-vector multiplication example (figure 3.5). In that
case, i is considered as constant and the j loop is classified as:

M[i:i,0:127]|element ∧ v[0:127]|element → r[i:i]|shared

Summary of polyhedral model-based species

To conclude the polyhedral model-based theory of algorithmic species, the steps to
derive species are summarised: 1) construct the domain descriptions and access
functions in the polyhedral model (section 3.2.1), 2) derive the base loops and
structure loops (algorithm 3.1), 3) compute the matrices Dx,S , Dy,S , Aa, Ba,
and ~c (section 3.2.2), 4) apply the dependence check (equation 3.19), 5) derive the
access patterns (algorithm 3.2), and 6), compute all access ranges (section 3.2.2).
Because all these steps are deterministic formal steps, the resulting algorithmic
species is formally defined to correspond to its program code and vice versa.

3.2.3 Automatic extraction of species

One of the goals for a classification of program code is to allow automatic extrac-
tion of classes where possible. Now that the theory behind algorithmic species
has been introduced, the formal definitions can be followed to construct a tool to
automatically identify algorithmic species in program code. This section intro-
duces a C language algorithmic species extraction tool (aset) to annotate species
as pragma’s in program code. Because the algorithmic species theory is based
on the polyhedral model, the polyhedral extraction tool (pet) [140] is used as a
first step. pet is chosen above other polyhedral model extraction tools for its
preservation of source line numbering, crucial for code annotations.

aset is structured according to the algorithmic species theory. The different
steps involved are illustrated in figure 3.9 and described as follows:

(a) pet is invoked to extract a polyhedral representation from static affine loop
nests in C program code. In this step, artificial structure loops are added if
necessary, as will be discussed in more detail.

(b) The base loops (~x) and structure loops (~y) are identified per loop nest, and
the corresponding iteration domains (Dx and Dy) are identified per statement.
Furthermore, A, B and ~c are computed to describe the array references.

(c) The dependence test is applied to determine whether the base loop iterations
can safely be executed in any order. This is implemented as a combination of
a GCD-test and a Banerjee-test, which will be described in detail.

51

Chapter 3. Classifications of program code

(d) Algorithm 3.2 is applied to extract the array patterns.

(e) The array and structure access ranges are derived and everything is combined
into an algorithmic species.

PET

a

compute x, y,

A, B, c, Dx, Dy

dependence

test

extract access

patterns

combine into

species

program code

with species

sequential

program code

b c d e

Figure 3.9: Overview of the algorithmic species extraction tool aset.

With aset, all loops in static affine program code are classified for which the
dependence test of equation 3.19 holds. To limit the number of classifications, the
polyhedral extraction tool pet allows the user to delimit source code targeted at
parallelisation, thus omitting boundary or debug code such as the initialisation of
variables or the printing of results. Because aset can classify loop nests at each
possible level, the resulting program code can have nested classifications. To limit
the number of classifications, users can instruct aset to not further consider loop
nests within already classified code.

Creating artificial structure loops

To apply the (loop-based) species theory, program code is required to be struc-
tured in a pre-defined manner: using as many loops over array references as
possible. This requirement is not imposed on the programmer, but aset instead
performs a temporary code transformation after obtaining the output of pet. For
example, the neighbourhood references to array a in figure 3.10 (left) are explicit
rather than embedded in a structure loop. As a result, algorithm 3.2 will not
yield the intended results, since the code does not contain any structure loops. In
order to overcome this problem, the program code needs to be transformed into
the code shown on the right hand side of figure 3.10. Therefore, aset identifies
statements with multiple reads and derives address offsets with respect to the
base loop variables (in the example the offsets are -1, 0 and 1). When offsets are
consecutive and span a range of two or more, a temporary loop is introduced. In
our example, this is achieved by introducing the artificial structure loop k.

Implementing the dependence test

To implement the dependence test (step (c) of figure 3.9) as described in equa-
tion 3.19, a comparison between array references of all loop iterations is required.
Because this is not scalable, aset uses a combination of two conservative but

52

3.2. Algorithmic species

1 for (i =1; i <128−1; i++) {
2 m[i] = 0 .33 ∗ (a [i−1]+a [i]+a [i +1]) ;
3 }

1 for (i =1; i <128−1; i++) {
2 temp = 0 ;
3 for (k=−1; k<=1; k++) {
4 temp += a [i+k] ;
5 }
6 m[i] = 0 .33 ∗ temp ;
7 }

a[1:126]|neighbourhood(-1:1) → m[1:126]|element

Figure 3.10: The 1D Jacobi stencil of figure 3.6 (left), its functionally equivalent transformed
version with a structure loop k (right), and the corresponding algorithmic species (bottom).

scalable tests: the GCD-test and the Banerjee-test [88]. The GCD-test (short
for greatest common divisor) searches dependences among integer values of the
loop variables, but does not consider the loop bounds. As a result, if dependences
exist beyond the loop bounds, the GCD-test produces a false positive. In con-
trast, the Banerjee-test does consider loop bounds, but searches both integer and
non-integer values. Again, this can result in a false positive. Both tests are com-
bined within aset: the GCD-test searches for integer values and the Banerjee-test
searches for values within the loop bounds. This combination is sufficient to im-
plement equation 3.19 for affine expressions: an integer value outside the loop
bounds and a non-integer value within the loop bounds can only co-exist if mul-
tiple solutions exist. Because affine equalities are first-order expressions, they
cannot produce multiple solutions. For example, the statement A[2*i*i+2] =

A[5*i] yields an equality with two solutions: 2 · i2 + 2 = 5 · i, but is not affine.
Other tests, such as the I-test [88] or the Omega test [118] provide more complex
alternatives to our approach.

3.2.4 Evaluation and discussion

The previous sections have introduced the polyhedral model-based theory of algo-
rithmic species. Now, this section evaluates the classification and reflects on the
goals and requirements, as has been done for other classifications in section 3.1.
The following is discussed in this section: 1) the classification of an entire bench-
mark suite, 2) the use of species for performance prediction, 3) the limitations
of the theory, and 4) an evaluation of the set goals and requirements. For an
evaluation of how algorithmic species can help improve the programmability of
GPUs, we refer to chapter 4 which will discuss a compiler based on species.

Classification of a benchmark suite

The theory behind algorithmic species and aset is evaluated by manually and
automatically classifying program code from an entire benchmark suite. For this
purpose, the PolyBench/C 3.2 benchmark suite [117] is selected, containing 30

53

Chapter 3. Classifications of program code

Benchmark Summary of functionality #species SLoC
Linear algebra kernels

2mm Two matrix multiplications 2 (+4) 16/16 100%
3mm Three matrix multiplications 3 (+6) 24/24 100%
atax Matrix transpose and multiplication 2 (+2) 12/12 100%
bicg Sub kernel of BiCGStab linear solver 2 (+2) 12/12 100%
cholesky Cholesky decomposition kernel 2 (+1) 10/14 71%
doitgen Multi-resolution analysis kernel 2 (+5) 17/17 100%
gemm Matrix multiplication 1 (+2) 8/8 100%
gemver Matrix-vector multiplication and addition 4 (+3) 18/18 100%
gesummv Scalar, vector and matrix multiplication 1 (+1) 9/9 100%
mvt Matrix-vector product and transpose 2 (+2) 10/10 100%
symm Symmetric matrix multiplication 1 (+2) 11/13 85%
syr2k Symmetric rank-2k operations 1 (+2) 9/9 100%
syrk Symmetric rank-k operations 1 (+2) 8/8 100%
trisolv Solver for linear triangular systems 1 4/7 57%
trmm Triangular matrix multiplication kernel 1 3/7 43%
Linear algebra solvers

gramschmidt Algorithm for the Gram-Schmidt process 3 (+2) 16/21 76%
durbin Levinson-Durbin recursion solver 2 6/18 33%
dynprog 2D dynamic programming algorithm 1 (+1) 5/17 29%
lu LU decomposition kernel 2 (+1) 8/10 80%
ludcmp LU decomposition kernel 4 12/33 36%
Data-mining

correlation Correlation computation kernel 4 (+4) 30/34 88%
covariance Covariance computation kernel 3 (+3) 19/21 90%
Graph algorithms

floyd-warshall Find shortest path in weighted graph 0 0/7 0%
Image processing

reg detect 2D Regularity detection algorithm 3 (+2) 14/27 52%
Stencil operations

adi Alternating direction implicit solver 3 9/30 30%
fdtd-2d 2D finite different time domain kernel 4 (+3) 20/20 100%
fdtd-2d-apml 2D FDTD using an anisotropic layer 1 (+3) 28/28 100%
jacobi-1d-imper 1D Jacobi stencil computation 2 6/8 75%
jacobi-2d-imper 2D Jacobi stencil computation 2 (+2) 12/12 100%
seidel-2d 2D Seidel in-place stencil operation 0 0/7 0%

Table 3.2: Classification results for the PolyBench benchmark suite. The third column lists
the number of non-nested species and between brackets the additional number of nested species.
The last column gives the amount and percentage of classified source lines of code (SLoC).

benchmarks (157 loops in total) from 6 domains in scientific computing. Poly-
Bench is chosen because it contains only program code satisfying the requirements
to be representable in the polyhedral model: they contain only static affine loop
nests. An overview of the benchmarks in the PolyBench suite is given on the left
hand side of table 3.2.

The code in the PolyBench suite has been classified both manually (by hand)
and automatically (using aset), obtaining exactly the same results. However, we
note that manual classification initially missed a few species, as it is not always
straightforward to manually perform the dependence test of equation 3.19. The

54

3.2. Algorithmic species

results are shown in the last two columns of table 3.2, and the amount of non-
nested species in the third column. Additional nested classifications are shown
between brackets, i.e. classifications of a loop that are already part of another
species. From the total of 30 benchmarks, 28 benchmarks are identified to have
loop-parallelism in their current form. All loops with parallelism in these 28
benchmarks are identified by a total of 115 species (not necessarily different from
each other), of which 55 species are contained within others, i.e. they are nested
species. All other loops do not meet our dependence test of equation 3.19.

From the total of 115 species identified, two examples are discussed in detail
for which it is not trivial to see that certain loop iterations can be executed in any
order. The left hand side of figure 3.11 first shows the result of the final loop nest
of the reg detect benchmark. Using the algorithmic species theory, a species
for the i-loop is found as shown in the bottom of the figure: all iterations of the
i-loop (lines 2–4) can be executed in any order. The execution of the i-loop is
visualised in figure 3.11, showing reads to array path as r and writes as w.

1 for (j =1; j<=M−1; j++) {
2 for (i=j ; i<=M−1; i++) {
3 path [j] [i] = path [j −1] [i −1] + mean [j] [i] ;
4 }
5 } w w w

r r r

0 1 2 3 4

0

1

2

3

4

[][.]

[.][]

path[j-1:j-1,j-1:M-2]|element ∧ mean[j:j,j:M-1]|element →

path[j:j,j:M-1]|element

Figure 3.11: A snippet from PolyBench’s reg detect (left), an illustration of references to
path with j=2 and M=5 (right), and the species for lines 2–4 (bottom).

As a second example, the final loop nest of the covariance benchmark
is discussed, as shown on the left hand side of figure 3.12. By applying the
algorithmic species theory, we find that iterations of the j2-loop (lines 2–8) can
be safely executed in any order. The classification for the j2 loop is shown in
the bottom of the figure. The resulting species contains an overlapping full and
chunk access: the input array data is accessed in two ways, as (i, j1) and as
(i, j2). Writes to symmat are also performed in two different statements, as
visualised on the right hand side of figure 3.12. Here, a is used for a write and
read, and w is used for a write-only access. The visualisation shows why the
iterations of the j2-loop can be safely executed in any order: every write to a
symmat element depends only on symmat elements either read in the same j2
iteration or not read in this iteration of the j1-loop at all.

55

Chapter 3. Classifications of program code

1 for (j 1 =0; j1<M; j1++) {
2 for (j 2=j1 ; j2<M; j2++) {
3 symmat [j 1] [j 2] = 0 . 0 ;
4 for (i =0; i<N; i++) {
5 symmat [j 1] [j 2] += data [i] [j 1]∗ data [i] [j 2] ;
6 }
7 symmat [j 2] [j 1] = symmat [j 1] [j 2] ;
8 }
9 }

a a a

w

w

0 1 2 3 4

0

1

2

3

4

[.][]

[][.]

data[0:N-1,j1:j1]|full ∧ data[0:N-1,j1:M-1]|chunk(0:N-1,-) →

symmat[j1:M-1,j1:j1]|element ∧ symmat[j1:j1,j1:M-1]|element

Figure 3.12: A snippet from PolyBench’s covariance (left), an illustration of references to
symmat with j1=2 and N=M=5 (right), and the species for lines 2–8 (bottom).

Using species for performance prediction

Performance prediction is one of the possible goals we identified for an algorithm
classification. We briefly mention the use of algorithmic species within the ‘boat
hull model ’, a performance prediction technique based on the roofline model [144].
The boat hull model is a performance model that does not require program code
to be available for a target (parallel) platform, but instead gives a rough estimate
based on the algorithmic species identified in sequential code. The boat hull
model is able to do this by generating a specific instance of the roofline model for
a given algorithmic species: a species-specific roofline model. More details on the
boat hull model can be found in [10] and [11].

Restrictions and abstractions

A number of restrictions equal to those of the polyhedral model are imposed upon
the algorithmic species theory. First of all, for program code to be represented
using our formulations, it must contain affine array accesses and conditions (i.e.
expressible in the form of equation 3.6) and static affine loop control (i.e. loop
bounds that can be expressed as a system of affine inequalities and do not change
throughout the execution of the loop). Furthermore, arrays must be explicitly
referenced (Fortran style), e.g. pointer arithmetic is not supported.

Furthermore, we make a remark on the fact that ranges and patterns in al-
gorithmic species are upper-bounds. For example, if an element pattern ranges
from 0 to 63, it might be possible that elements 10 and 40 are never referenced at
all because of an if-condition. Similarly, ranges for chunk and neighbourhood are
upper-bound: partial chunks or partial neighbourhoods with ‘holes’ are still classi-
fied as chunks or neighbourhoods. In general, all accesses described by algorithmic
species are ‘may-accesses’: they can be predicated by some (loop) condition.

Finally, we note that some access patterns can be seen as special cases of
others. For example, a full pattern is equal to a chunk pattern with a structure
access range equal to the array access range. The inclusion of the full pattern

56

3.2. Algorithmic species

can therefore be seen as syntactic sugar : it helps improve the compactness and
readability of the species. Section 3.3 elaborates on such cases.

Evaluation of the goals and requirements

Earlier, section 3.1 has evaluated algorithm classifications against a number of
requirements set in this chapter. Now, let us evaluate algorithmic species with re-
spect to these requirements: algorithm classes are required to be 1) automatically
extracted, 2) intuitive, 3) formally defined, 4) complete, and 5), fine-grained.

1. Species can be extracted automatically from C program code using aset,
a tool that follows directly from the algorithmic species theory. With aset, a
time consuming and error-prone manual classification is no longer required,
making species suitable to be integrated into an automatic tool-chain.

2. Algorithmic species uses a very limited vocabulary: species are composed of
a combination of only five different patterns. The names of these patterns
are descriptive, creating an intuitive and easy to use classification. The
complete species description forms a high level abstraction of the mathe-
matical representation used in the polyhedral model. This is not only ben-
eficial for manual uses, but can also benefit automatic uses: for example,
this creates opportunities to use species for skeleton-based source-to-source
compilation (as will be shown in chapter 4) or for performance prediction
(e.g. the boat hull model). In both of these examples, prior to this work
manual identification of some form of algorithm classes was required.

3. Notwithstanding intuitiveness, algorithmic species has a formal mathemat-
ical basis, based on mathematical representations in the polyhedral model.
With this formal basis, every class is formally defined to correspond to
its program code and vice versa. This can be helpful for correctness guar-
antees and to prevent ambiguity or lack of clarity. In contrast, many high
abstraction-level classifications and skeleton classifications provide a textual
description or merely a few examples to ‘define’ a particular class.

4. The classification is not complete in the sense that it will classify any piece
of program code. Nevertheless, it is complete within certain pre-defined
limits: any static affine loop nest with loop-parallelism can be classified
under the algorithmic species theory. This is in contrast to classifications
such as pattern languages or algorithmic skeletons, which require new class
definitions to be added as different types of algorithms are evaluated.

5. Species are fine-grained. They capture information about the structure
and amount of parallelism, memory requirements, atomicity, data-reuse and
data-locality. Algorithmic species are finer-grained than related classifica-
tions such as skeletons and idioms. For example, in comparison with [40],
more information is added, e.g. neighbourhood ranges and array ranges. On

57

Chapter 3. Classifications of program code

the other hand, when compared to other program code classifications such as
the polyhedral model, we find that algorithmic species are coarser-grained,
abstracting away from the details.

Since the algorithmic species classification meets our set requirements, it is
a candidate to meet our goals. Algorithmic species is a common microprocessor
and programming language independent classification that can be applied for the
various uses of a whole range of existing classifications. Algorithmic species is
evaluated with respect to manual and automatic uses:

• Programmers will be able to use algorithmic species for various tasks, e.g.
when developing, mapping, porting, optimising, profiling or debugging code.
For example, programmers can use algorithmic species to relate to well
known solutions for certain types of problems or to compare implementa-
tions with other programmers. If needed, they can omit details such as ac-
cess ranges and refer to the combination of access patterns only. In this way,
algorithmic species can replace existing high abstraction-level classifications
such as Berkeley motifs [23] or parallel pattern languages [87]. In contrast
to these existing classifications, species have the advantage of among others
automatic extraction of classes and a finer-grained classification.

• As for automated uses, source-to-source compilation (see chapter 4) and
the boat hull model [11] are identified as two techniques benefiting from the
work on algorithmic species. Still, other tools and compilers could build
upon our classification, forming algorithmic species into a common basis to
capture properties of program code such as the structure of parallelism or
the amount of data-reuse. For example, algorithmic species can improve the
work build upon existing classifications such as skeletons (e.g [40, 41, 55]),
idioms [42], or Æcute [77]. Advantages of species include a formal theory,
automated extraction, and fine-grained information.

3.2.5 Conclusions

This section, has introduced ‘algorithmic species’, a classification of program
code based on memory access patterns. The main goal of the classification is
to apply structure to the types of program code that are targeted to be acceler-
ated on specialised microprocessors such as GPUs. Algorithmic species provide a
microprocessor-agnostic structured classification (or ‘summary ’) of program code.
Programmers or compilers can use this for example to take parallelisation deci-
sions, perform memory hierarchy optimisations, make performance predictions or
compare solutions. We have also seen the classification’s formal theory, which is
based on the polyhedral model, and aset, a tool to automatically extract species
from program code.

Still, two main drawbacks of the presented algorithmic species theory are iden-
tified: 1) its applicability is limited to static affine loop nests, and 2) two equal

58

3.3. Algorithmic species revisited

species can still have significantly different memory access patterns (e.g. a tiled
loop and its non-tiled counterpart). The first limitation is overcome in section 3.3,
in which a new theory for algorithmic species is presented, allowing it to be applied
beyond static affine loop nests. Furthermore, the second limitation is overcome
in section 3.4, in which a finer-grained version of algorithmic species is presented,
named species+.

3.3 Algorithmic species revisited

The previous section introduced algorithmic species. Because its underlying the-
ory is based on the polyhedral model [59], two of our five requirements are only
partially fulfilled: completeness and automatic extraction are only achieved for
code that is represented as static affine loop nests. Therefore, this section presents
a new theory behind algorithmic species to extend its applicability. Although the
new theory is not based on the polyhedral model, it does still respect algorithmic
species’ vocabulary and intuitive meaning.

The new theory behind algorithmic species is based on characteristics of in-
dividual array references. This is motivated by an earlier observation: many of
the original access patterns are special cases of others. For example, the element
pattern can be seen as a chunk access pattern of size 1, and the neighbourhood
pattern can be seen as an chunk access pattern with overlap. Therefore, the new
theory is based on a single ‘unified’ access pattern, which can later be transformed
into one of the original patterns that now serve the purpose of syntactic sugar.

This section first introduces the new unified access pattern: the array reference
characterisation. Following, it is shown how these characterisations can be merged
and transformed into algorithmic species. Next, a new automatic extraction tool
based on the new theory is presented. Finally, the new theory and its extended
applicability are evaluated.

3.3.1 Array reference characterisations

The new array reference-based theory for algorithmic species is based on charac-
teristics of individual array references. This section defines this characterisation.
For simplicity, only static affine loop nests are considered in the examples of this
section. Later, section 3.3.4 will discuss other types of loop nests. In line with the
earlier defined algorithmic species theory, our work is restricted to Fortran-style
arrays: arrays do not alias and pointer arithmetic is not allowed.

Basic case: single loop and 1-dimensional arrays

For illustration purposes, only loop nests with a single loop and 1-dimensional
array references are initially discussed. Later, the general case is considered: loop
nests with one or more loops and references to one or multi dimensional arrays.

59

Chapter 3. Classifications of program code

As an example of a single loop with 1-dimensional references, consider fig-
ure 3.13 and the reference to array A with respect to the i-loop. This reference
can be characterised by its name (A), access type (r for read), domain with re-
spect to the loop (lower-bound 2 and upper-bound 7), per-iteration accessed size
(1 element), and its iteration step (1 element). This forms the 5-tuple characteri-
sation (A, r, [2..7], 1, 1). For the reference to B, (B,w, [0..5], 1, 1) can be obtained
in a similar way.

1 for (i =2; i <8; i++) {
2 B[i −2] = A[i] ;
3 }

i = 3

i = 4

A[2] A[7]

Figure 3.13: Example code with a static affine loop. The picture on the right illustrates with
filled circles (each circle is an array element) the domain of A: left is A[0] and right A[7]. The
red circles highlight references made in two different iterations of the i-loop (top and bottom).

In general, each array reference in a static affine loop nest can be characterised
using such a 5-tuple R = (N ,A,D, E ,S). The tuple’s elements are defined as:

• N is the array’s name, given as a string.

• A ∈ (r, w) is the access type: r for read and w for write.

• D ∈ [Z..Z] gives the integer domain of array references with respect to the
loop nest, represented as an interval with a lower-bound and upper-bound.

• E ∈ N gives the number of elements accessed. Note that E = 1 unless there
is an additional loop inside the body of our reference loop nest (prior to
merging as will be discussed in section 3.3.2).

• S ∈ Q gives the step. Note that the step can be negative in case of a
backwards counting loop, zero in case of a loop-independent reference, or a
unit fraction in case of a non-monotonic step. For example, the fraction 1

4
represents a step taken every 4 iterations.

To further illustrate the basic characterisation of array references, several other
examples are discussed. First, consider the code snippet of figure 3.14. The first
loop (lines 1–7) and the second loop (lines 8–10) are functionally equivalent. For
both loops, the characterisation (G, r, [0..4], 1, 2) is found for the reference to G

and (H,w, [0..2], 1, 1) is found for the reference to H with respect to the i-loop.
Next, consider the two functionally equivalent loops of figure 3.15. For these

loops, the references are constructed with respect to the outer i-loop only. Al-
though the two code snippets are functionally equivalent, the characterisation of
the references to array P is different. For the first loop (lines 1–6), the reference
to P is characterised as (P, r, [0..7], 2, 2) and to Q as (Q,w, [0..3], 1, 1). Note that
a size and step S = E = 2 is obtained for P because of the j-loop. For the second

60

3.3. Algorithmic species revisited

1 for (i =0; i <8; i++) {
2 i f (i % 2 == 0) {
3 i f (i < 6) {
4 H[i /2] = G[i] ;
5 }
6 }
7 }
8 for (i =0; i <3; i++) {
9 H[i] = G[i ∗ 2] ;

10 }

i = 2

i = 4

G[0] G[4]

i = 2

i = 4

H[0] H[2]

Figure 3.14: Example of two functionally equal loops (left). The reference to the two arrays
is illustrated using filled circles, highlighting in red references for two iterations of the i-loop
(right). The illustrations are valid for both loops.

1 for (i =0; i <4; i++) {
2 Q[i] = 0 ;
3 for (j =0; j <2; j++) {
4 Q[i] += P[2∗ i+j] ;
5 }
6 }
7 for (i =0; i <4; i++) {
8 Q[i] = P[2∗ i]+P[2∗ i +1] ;
9 }

i = 1

i = 2

P[0] P[7]

i = 1

i = 2

P[0] P[6]

i = 1

i = 2

P[1] P[7]

i = 1

i = 2

Q[0] Q[3]

Figure 3.15: Example of two functionally equal loops (left). The right hand side illustrates
(top to bottom): the reference to P for the first loop (lines 1–6), the first reference to P for the
second loop (lines 7–9), the second reference to P for the second loop, and the reference to Q for
both loops.

loop (lines 7–9), two references to P are found, described as (P, r, [0..6], 1, 2) and
(P, r, [1..7], 1, 2). The characterisation of Q remains as before. To still obtain the
same result, merging of two 5-tuples will be introduced in section 3.3.2.

General case: N loops and M-dimensional arrays

So far, all references have been to 1-dimensional arrays. To be able to characterise
M -dimensional arrays, the 5-tupleR is modified by adding multiple dimensions to
the domain D, the number of elements E , and the step S. The different array di-
mensions are represented as a set with angular brackets, i.e. D = 〈D1,D2, ...,DM 〉,
E = 〈E1, E2, ..., EM 〉 and S = 〈S1,S2, ...,SM 〉. The individual Di, Ei and Si re-
tain their definition as given for the 1-dimensional case. The total number of
elements now becomes the product of the number of elements in each dimension.
In case there is only a single dimension, the angular brackets are omitted from
the notation to improve readability.

61

Chapter 3. Classifications of program code

To illustrate the modified 5-tuple R, array reference characterisations will
be derived for the example code shown in lines 1–5 of figure 3.16. When the
characterisation is applied with respect to both loops i and j, the tuples as shown
in figure 3.16 are obtained (along with their corresponding algorithmic species).
In this characterisation, 1

8 as a step for T represents a unit step every 8 loop
iterations, and 〈 18 , 1〉 as a step for R represents a unit step every 8 iterations
in the first dimension, and a unit step each iteration in the second dimension
(modulo the domain).

1 for (i =0; i <8; i++) {
2 for (j =0; j <8; j++) {
3 S [i ∗8+ j] = R[i] [j] + T[i] ;
4 }
5 }

6 for (k=0; k<64; i++) {
7 S [k] = R[k / 8] [k%8] + T[k / 8] ;
8 }

(R, r, 〈[0..7], [0..7]〉, 〈1, 1〉, 〈
1

8
, 1〉) → R[0 : 7, 0 : 7]|element

(S,w, [0..63], 1, 1) → S[0 : 63]|element

(T, r, [0..7], 1,
1

8
) → T[0 : 7]|element

Figure 3.16: Example code with multiple loops and multi-dimensional arrays (left), function-
ally equivalent code with only a single loop (right), and the corresponding 5-tuple characterisa-
tions and species (bottom).

For the functionally equivalent code in lines 6–8 of figure 3.16, the same char-
acterisations are obtained as for lines 1–5. The characterisations remain the same
because of an abstraction made by the original theory: neither the number, nor
the order, of loops is taken into account. This topic is further discussed in sec-
tion 3.4, where a finer-grained classification is introduced that does not make this
abstraction.

The matrix-vector multiplication of figure 3.17 is a second example of multi-
dimensional arrays. Characterising this code with respect to the i-loop, gives us
the results as shown in the bottom of figure 3.17 (along with the partial species
as defined by the polyhedral model-based theory). In the result, the step 〈1, 0〉
for M reflects the fact that references to the second dimension are independent of
the i-loop: a whole row of the matrix is accessed at every iteration of the i-loop.

3.3.2 Array reference-based algorithmic species

Now that the array reference characterisations are illustrated (the new ‘unified’
access pattern), we present the array reference-based theory of algorithmic species.
This section contains two main parts: 1) the merging of multiple array reference
characterisations, and 2) the translation of merged characterisations into species.

62

3.3. Algorithmic species revisited

1 for (i =0; i <32; i++) {
2 r [i] = 0 ;
3 for (j =0; j <64; j++) {
4 r [i] += M[i] [j] ∗ v [j] ;
5 }
6 }

0 63

0

31

0

31

0

63

0

63

0

31

0

31

+

+

→

→

M v r

(M, r, 〈[0..31], [0..63]〉, 〈1, 64〉, 〈1, 0〉) → M[0 : 31, 0 : 63]|chunk(−, 0 : 63)

(v, r, [0..63], 64, 0) → v[0 : 63]|full

(r, w, [0..31], 1, 1) → r[0 : 31]|element

Figure 3.17: Matrix-vector multiplication, in essence equal to figure 3.5 (left), an illustration
of the first two i-loop iterations (right), and its classification (bottom).

Merging array references

Before translating array reference characterisations into algorithmic species, a
merging step is performed. This allows us to: 1) form compound access patterns
such as tile and neighbourhood, and 2) abstract away implementation choices (e.g.
consider the loop unrolling performed in figure 3.15). As the latter issue was not
resolved in the polyhedral model-based theory, aset was required to perform code
transformations before classifying program code. The new theory addresses this
issue by defining a merge operation for array reference characterisations.

For a pair of array references Ra and Rb, merging is only considered when
the name is equal (Na = Nb), the access type is the same (Aa = Ab), and the
step is equal (Sa = Sb). We have already seen an example that meets these
conditions: the references to array P in the second loop (lines 7–9) of figure 3.15.
For this example, we want to merge (P, r, [0..6], 1, 2) and (P, r, [1..7], 1, 2) into
(P, r, [0..7], 2, 2), such that we obtain the same result as for the characterisation
of P in the first loop (lines 1–6).

Algorithm 3.3 describes the rules for merging. The algorithm is repeatedly
applied until no changes to the set of array references R for a single loop nest are
made. It considers each pair Ra,Rb ∈ R and proceeds as follows:

• [2] Test the condition of matching name, access type, and step.

• [3] Test whether the lengths of the domains are equal and whether the
domains intersect.

• [4–5] Calculate the new domain Dnew as the union Da ∪ Db and the new
number of elements Enew as the absolute difference between the bounds of
the domains.

63

Chapter 3. Classifications of program code

• [6] Continue only if the new number of elements Enew is not significantly
different from the sum of the old number of elements. This is determined
by a threshold tgap, which will be discussed in more detail.

• [7–8] Replace the tuples Ra and Rb with Rnew.

ALGORITHM 3.3: Merging a pair of array reference characterisations.

Input: array reference characterisations R (w.r.t. a loop nest)
1 foreach {Ra,Rb} ∈ R do

2 if Na = Nb and Aa = Ab and Sa = Sb then

3 if |Da| = |Db| and Da ∩ Db 6= ∅ then
4 Dnew = Da ∪ Db

5 Enew = |min(Da)−min(Db)|
6 if Ea + Eb + tgap > Enew then

7 Rnew = (Na,Aa,Dnew, Enew,Sa)
8 replace Ra and Rb with Rnew in R

9 end

10 end

11 end

12 end

The merge operator in case of a neighbourhood access pattern is illustrated us-
ing the example shown in figure 3.18. In this example, 3 references to array V are
found and characterised as RV[i-1] = (V, r, [0..5], 1, 1), RV[i] = (V, r, [1..6], 1, 1),
and RV[i+1] = (V, r, [2..7], 1, 1). When applying algorithm 3.3, the merged char-
acterisation (V, r, [0..7], 3, 1) is obtained, including a combined domain D and
number of elements E . This merged array reference characterisation captures the
neighbourhood pattern’s overlap between iterations as the number of elements E
(3) is now larger than the step S (1).

1 for (i =1; i <7; i++) {
2 W[i] = V[i −1] +
3 V[i] +
4 V[i +1] ;
5 }

i = 3

i = 4

V[0] V[5]

i = 3

i = 4

V[1] V[6]

i = 3

i = 4

V[2] V[7]

Figure 3.18: Example of an unrolled neighbourhood access pattern (left). The right hand side
illustrates two iterations of the i-loop for the 3 references to V.

Next, the example of interpolation as shown in figure 3.19 is discussed. In
this example, the set of read references per iteration is not convex: there is a gap

64

3.3. Algorithmic species revisited

between references K[i-1] and K[i+1]. For these references, (K, r, [0..4], 1, 2)
and (K, r, [2..6], 1, 2) are found prior to merging. Now, these can be treated as
two separate element accesses, or merged into a neighbourhood access. When
performing the latter, the over-approximation (K, r, [0..6], 3, 2) is obtained: 3 el-
ements may be accessed each iteration, but only the 2 extreme elements are in
fact accessed. Whether or not merging is performed in this case depends on the
value of the tgap variable in algorithm 3.3. The polyhedral model-based theory
does not discuss the issue of non-convex sets, implying tgap =∞.

1 for (i =1; i <6; i+=2) {
2 K[i] = K[i −1] + K[i +1] ;
3 }

i = 3

i = 5

K[0] K[4]

i = 3

i = 5

K[2] K[6]

Figure 3.19: Example of an implementation of interpolation (left) and an illustration of two
loop iterations for the read references to K.

Translating array reference characterisations into species

Once the found array references are merged (where possible), they can be trans-
lated into algorithmic species. Species can thus be seen as an abstract and more
intuitive representation of a combination of array reference characterisations. For
automated use (e.g. in compilers), it might be advantageous to use the charac-
terisations directly, as they could provide additional information. However, for
manual use, the intuitive algorithmic species can provide better understandability
and usability.

Algorithm 3.4 extracts algorithmic species and their access patterns from array
reference characterisations. The algorithm processes each characterisation Ra

after merging as follows:

• [3–6] If Ra has a zero step, it belongs either to the full (for a read) or shared
(for a write) pattern.

• [7–8] Else, if precisely a single element of Ra is accessed every iteration, it
is classified as the element pattern.

• [9–10] Else, if the amount of elements accessed is larger than the step size,
there is overlap between iterations. This is captured by the neighbourhood
pattern.

• [11–13] If non of the above holds, Ra belongs to the chunk pattern. This
is the case when multiple elements are accessed, but there is no overlap
between successive iterations.

65

Chapter 3. Classifications of program code

As shown in algorithm 3.4, the names (Na) and domains (Da) are prefixes to the
access patterns. For the neighbourhood and chunk access patterns, the number of
elements (Ea) is a suffix. The final algorithmic species (combining all inputs and
outputs) is obtained by taking the results of algorithm 3.4 (in X) and combining
them as follows: I1 ∧ ... ∧ IP → O1 ∧ ... ∧ OQ, in which Ip represents an input
(Ap = r) and Oq represents an output (Aq = w).

ALGORITHM 3.4: Extracting species from array references.

Input: array reference characterisations R after merging (w.r.t. a loop nest)
1 X = ∅
2 foreach Ra ∈ R do

3 if Sa = 0 and Aa = r then

4 X ← Na Da full
5 else if Sa = 0 and Aa = w then

6 X ← Na Da shared
7 else if Ea = 1 then

8 X ← Na Da element
9 else if Sa < Ea then

10 X ← Na Da neighbourhood (Ea)
11 else

12 X ← Na Da chunk (Ea)
13 end

14 end

3.3.3 Automatic extraction of species

Section 3.2.3 introduced aset, the polyhedral model-based algorithmic species
extraction tool. This section presents a new extraction tool that follows from
the array reference-based theory of algorithmic species. The new tool is named
a-darwin7, short for automatic Darwin8.

The new tool is largely equal to aset in terms of functionality (apart from
its extended applicability), but is different internally (see figure 3.20). a-darwin

is based on a C parser, transforming C99 program code into an abstract syntax
tree (AST). From the AST, a-darwin extracts the array references and their
corresponding 5-tuple characterisations R. Next, the tool follows the theory: it
applies merging as described in algorithm 3.3 and extracts species as described
by algorithm 3.4. Finally, the species are inserted as pragma’s into the original
program code.

Algorithmic species and a-darwin are not intended to be able to perform loop
transformations, and can thus not create parallel loops if they are not already
present. A parallelising tool (such as Pluto [34]) could be used as a pre-processor

7Source-code is available as part of bones at http://github.com/cnugteren/bones/.
8a-darwin is named after Charles Darwin, the author of ‘On the Origin of Species’.

66

3.3. Algorithmic species revisited

paralleliser
(e.g. PLUTO)

extract 5-tuple
characterisations

dependence
test

merge array
references

translate into
species

program code
with species

sequential
program code

program code
with parallelism

Figure 3.20: Overview of the algorithmic species extraction tool a-darwin.

to create (e.g. through loop skewing) and identify parallel loops (see figure 3.20).
In case parallel loops are not identified a-priori, but are already present, a-darwin

can also perform basic dependence analysis. This allows a-darwin to be usable
as a stand-alone tool, similar to aset. For the dependence analysis, Bernstein’s
conditions are applied first, yielding the pairs Ra and Rb for which Na = Nb and
Aa 6= r∨Ab 6= r. Following, a combination of the GCD and Banerjee tests [88] is
applied on the remaining pairs. As already discussed in section 3.2.3, these tests
are conservative for non affine equalities: this might not find all parallel loops.
More advanced tests such as the I-test [88] or the Omega test [118] could improve
the coverage of a-darwin.

Static analysis has a limited scope of applicability, as will be discussed in
section 3.3.4 in more detail. Because some loop nests cannot be fully analysed,
a-darwin will classify species in some cases as over-approximations. These over-
approximations can currently only be tightened using the programmer’s knowl-
edge (manual). Alternatively, after modifications to a-darwin, run-time or pro-
filing information could be used (dynamic).

3.3.4 Evaluation and discussion

The main reason to develop the array reference-based theory of algorithmic species
was to extend its applicability. So far, all our examples have been of static affine
loop nests, fitting the original polyhedral model-based theory as well. This section
will therefore first evaluate the new theory on a number loop nests that do not
fit the polyhedral model. Furthermore, the possibility of classifying individual
statements with array reference characterisations will be shown. Finally, the
granularity issue of species will be discussed by evaluating an example.

In line with the evaluation of the polyhedral model-based theory, a-darwin

and the new theory have also been evaluated on the PolyBench benchmark suite.
Since the same results as in section 3.2.4 and table 3.2 are obtained, these results
are not further discussed.

67

Chapter 3. Classifications of program code

Extended applicability

This section discusses a number of examples that violate one of the constraints
of static affine loop nests: 1) non-static loop control, 2) non-affine loop bounds,
3) non-affine conditional statements, and 4) non-affine array references. The
examples are given in figure 3.21.

1 // Non−s t a t i c contro l
2 i = 0 ;
3 while (i < 8) {
4 B[i] = A[i] ;
5 i = i + A[i] ;
6 }
7
8 // Non−a f f i n e bound
9 for (i =0; i < 8− i ∗ i ; i++) {

10 H[0] = G[i] ;
11 }

12 // Non−a f f i n e condi t ion
13 for (i =0; i < 8 ; i++) {
14 i f (P[i] > 12) {
15 P[i] = 0 ;
16 }
17 }
18
19 // Non−a f f i n e re ferences
20 for (i =0; i < 8 ; i++) {
21 S [T[i]] = R[i ∗ i] ;
22 }

Figure 3.21: Examples of non-static affine loop nests: non-static control (top left), a non-affine
bound (bottom left), a non-affine condition (top right), and non-affine references (bottom right).

First, consider the example with non-static control in lines 1–6 of figure 3.21.
In every iteration of the loop, i is incremented by a value dependent on the
memory state. This leads to a case where the iteration step S is unknown at
compile-time and might not even be constant. In this case, the references are not
characterised. This form of loop-carried dependence is also significantly limiting
the possibilities of parallelisation, in particular for GPUs.

Next, consider the example with a non-affine loop bound (lines 8–11, fig-
ure 3.21). Although the loop bound is not affine, the upper-bound can still be
found at compile-time for this example (i ≤ 2). Doing so, (G, r, [0..2], 1, 1) and
(H,w, [0..0], 1, 0) are obtained. However, deriving the domain D for a loop with
non-affine loop bounds is not always possible. Consider the loop bound i<G[i]

instead. In this case, an over-approximation of the domain can only be provided
based on the programmer’s knowledge or on the type of G. For example, the
upper-bound could be 255 if G is a 1-byte unsigned char C data-type.

Lines 12–17 of figure 3.21 give an example of code with a non-affine conditional
statement. In case the condition would not be present, the reference to P would
be characterised as (P,w, [0..7], 1, 1). Since it is not possible to know upfront
whether or not the condition will evaluate to true or false, the same classification
has to be used. This can be seen as an over-approximation: stepping through the
domain with a unit step, but not necessarily performing a read access every time.

The final example in lines 19–22 of figure 3.21 shows an affine array reference
T and two non-affine array references R and S. The affine reference is charac-
terised as (T, r, [0..7], 1, 1). The reference to R has a non-constant step. There-
fore, (R, r, [0..49], 1, 1) is used, giving an over-approximation of the domain and
the step: not all elements are accessed. Type information of T could be included

68

3.3. Algorithmic species revisited

for the reference to S. Assuming a range of 0 to 255, (S,w, [0..255], 256, 0) is ob-
tained. This is classified as if all locations are written to in every loop iteration.

Overall, the new theory of algorithmic species allows for an extended appli-
cability outside the abstractions of the polyhedral model. However, as has been
shown, it is not always possible to give an exact classification or to extract an
array reference characterisation automatically. In some cases, manual fine-tuning
(as discussed for the examples) can help fine-tune the classification. Another op-
tion is to use run-time information (e.g. profiling) to fine-tune the array reference
characterisations.

Per-statement classification

Next, another advantage of the array reference-based theory over the polyhedral
model-based theory is illustrated: the possibility to classify individual statements.
Figure 3.22 shows the matrix-vector multiplication of figure 3.17 again, but now
with 5-tuple characterisations in-lined at different points. Note that the outer-
most classification is made with respect to the i-loop only. Furthermore, note
that because the step S takes its dimensionality from the number of loops con-
sidered, characterisations can include the empty set (∅). The example shows that
the theory is not limited to loops, but can also be applied to individual state-
ments. Furthermore, it illustrates the isolation of the loop body: although array
r is read and written in the loop body, it is classified from the outer-loop per-
spective as write-only because all reads to individual elements occur after writes.
The obtained representation shows similarities to the convex array region [46]
representation, which is discussed in more detail in section 3.4.2.

1 Rr = (r, w, [0..31], 1, 1)
2 RM = (M, r, 〈[0..31][0..63]〉, 〈1, 64〉, 〈1, 0〉)
3 Rv = (v, r, [0..63], 1, 0)
4 for (i =0; i <32; i++) {
5 Rr = (r, w, [i..i], 1, ∅)
6 r [i] = 0 ;
7 Rr = (r, w, [i..i], 1, 0)
8 Rr = (r, r, [i..i], 1, 0)
9 RM = (M, r, 〈[i..i][0..63]〉, 〈1, 1〉, 〈0, 1〉)

10 Rv = (v, r, [0..63], 1, 1)
11 for (j =0; j <64; j++) {
12 Rr = (r, w, [i..i], 1, ∅)
13 Rr = (r, r, [i..i], 1, ∅)
14 RM = (M, r, 〈[i..i][j..j]〉, 〈1, 1〉, 〈∅, ∅〉)
15 Rv = (v, r, [j..j], 1, ∅)
16 r [i] += M[i] [j]∗ v [j] ;
17 }
18 }

Figure 3.22: Matrix-vector multiplication with in-lined characterisations referring to the fol-
lowing loop or statement.

69

Chapter 3. Classifications of program code

Limitations to the amount of detail

Finally, consider an example to which loop tiling is applied. Loop tiling is a loop
transformation that can influence cache behaviour and thus significantly affects
performance and energy efficiency. Figure 3.23 shows a basic example of non-tiled
code (lines 1–3) and its tiled counterpart (lines 4–8). In this case, the tile size
is 2 by 2, visible in the program code as the step-size of the i and j loops and
the bounds of the ii and jj loops. When classifying this example using either
of the algorithmic species theories, references to E would classify as the species
‘E[0:7][0:7]element’ for both the original and tiled loops. In this case, species
are not fine-grained enough to capture the difference.

1 for (i =0; i <8; i++)
2 for (j =0; j <8; j++)
3 E[i] [j] = 0 ;

4 for (i =0; i <8; i=i +2)
5 for (j =0; j <8; j=j+2)
6 for (i i =0; i i <2; i i ++)
7 for (j j =0; j j <2; j j++)
8 E[i+i i] [j+j j] = 0 ;

Figure 3.23: Example code (left hand side) and a 2 by 2 tiled version (right hand side).

3.3.5 Conclusions

This section has introduced a new technique to classify array references in loop
nests as 5-tuple array reference characterisations. It has been shown that these
characterisations can be merged and transformed into the algorithmic species
of section 3.2. The new theory is in contrast to the polyhedral model-based
theory, not limited to static affine loop nests. However, we have also seen that
in this case, automatic classification yields in many cases an over-approximation,
requiring additional manual fine-tuning or dynamic analysis.

Furthermore, this section has also given an example of a limitation of algo-
rithmic species: not all memory access pattern related aspects are captured. This
is not limited to this particular example, there are other cases in which species
are not able to distinguish efficient (in terms of performance or energy efficiency)
from less efficient memory access patterns. Since memory access patterns are the
primary feature on which species are based, and performance and energy efficiency
are important aspects for the classification’s goals, section 3.4 proposes to extend
algorithmic species to capture more details.

3.4 Finer-grained species

Sections 3.2 and 3.3 have introduced the algorithmic species classification. How-
ever, section 3.3.4 has shown that species do not distinguish some memory access
patterns that can influence performance and energy efficiency significantly. This

70

3.4. Finer-grained species

section therefore introduce species+, a finer-grained classification based on the
array reference theory of section 3.3.

3.4.1 Species+: a finer-grained classification

The new species+ classification is based on the array reference-based theory of
algorithmic species. The new classification is therefore discussed as an extension to
this theory: we refer to section 3.3 for background on the 5-tuple characterisations.

To motivate a finer-grained classification, consider the references to array X as
shown in figure 3.24. All three references are characterised as (X, r, [0..63], 1, 1) in
the 5-tuple array reference characterisations with respect to the respective loop
nest. However, cache behaviour can differ significantly, leading to changes in
performance and energy efficiency. Examples are the differences between row-
major and column-major accesses or between sequential and strided accesses, i.e.
the difference between X[i*8+j] and X[j*8+i]. To be able to distinguish such
cases, this section proposes to create a more detailed characterisation. In this
way, the classification of accesses to X in figure 3.24 will be distinguishable.

1 for (i =0; i <8; i++) {
2 for (j =0; j <8; j++) {
3 Y[i] [j] = X[i ∗8+ j] + X[j ∗8+ i] ;
4 }
5 }

6 for (k=0; k<64; k++) {
7 Z [k] = X[k] ;
8 }

Figure 3.24: Example showing three different ways to access the 64 first elements of array X.

The new classification species+ modifies the 5-tuple array reference character-
isation by appending a repetition factor X , creating a 6-tuple. The new repetition
factor X reflects the iteration counts of loops: it is a set of N items (with N the
number of loops in the nest) using the notation X = X1|X2|...|XN . Additionally,
S is modified. Section 3.3.1 already included the dimensions of the arrays into S
to obtain S = 〈S1,S2, ...,SM 〉. Now, each step Sx is modified to become a set of
size N , using the same notation as for X : Sx = Sx,1|Sx,2|...|Sx,N . Note that a
different notation is used for the dimensions of the arrays (angular brackets) and
for the number of loops (pipes). The step S can also be represented as a matrix
with N columns and M rows, as shown in equation 3.28.

S1,1 S2,1 ... SN,1

S1,2 S2,2 ... SN,2

...

S1,M S2,M ... SN,M

(3.28)

species+ is illustrated through the example of figure 3.25. For the access to
array A in this example, (A, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8) is found as the new
6-tuple array reference characterisation. Here, the step 〈1|0, 0|1〉 or

[

1 0
0 1

]

repre-
sents a unit step in the first array dimension every iteration of the first loop i and

71

Chapter 3. Classifications of program code

a unit step in the second array dimension every iteration of the second loop j. The
repetition factor 8|8 captures the iteration counts of the two loops. For the access
to array B in figure 3.25, the 6-tuple remains the same except for the step, which
becomes 〈0|1, 1|0〉. Finally, for C, the step becomes 〈1, 1〉 and the repetition factor
becomes 8 (there is only a single loop), yielding (C, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1, 1〉, 8).

1 for (i =0; i <8; i++) {
2 for (j =0; j <8; j++) {
3 B[j] [i] = A[i] [j] ;
4 }
5 }
6 for (i =0; i <8; i++) {
7 C[i] [i] = 0 ;
8 }

0 7

0

7

Figure 3.25: Additional examples of two-dimensional array references (left). The right hand
side illustrates the accesses made to array C.

A second example is the motivating case with accesses to array X of figure 3.24.
With the more detailed 6-tuple, the array reference characterisations become as
shown in equation 3.29. The steps S now show the differences between the 3 access
types: it is now possible to distinguish between a row-major and a column-major
access for this example.

RX[i∗8+j] = (X, r, [0..63], 1, 8|1, 8|8)

RX[j∗8+i] = (X, r, [0..63], 1, 1|8, 8|8)

RX[k] = (X, r, [0..63], 1, 1, 64)

(3.29)

As a final illustrating example, the accesses made to arrays R, S, and T in
example 3.16 are re-classified using species+. The 5-tuple array reference char-
acterisation could not capture all details (as discussed in section 3.3.1). Now, with
the more detailed 6-tuple, the differences are identified, as shown in equation 3.30.

RR[i][j] = (R, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8)

RR[k/8][k%8] = (R, r, 〈[0..7][0..7]〉, 〈1, 1〉, 〈
1

8
, 1〉, 64)

RS[i∗8+j] = (S,w, [0..63], 1, 8|1, 8|8)

RS[k] = (S,w, [0..63], 1, 1, 64)

RT[i] = (T, r, [0..7], 1, 1|0, 8|8)

RT[k/8] = (T, r, [0..7], 1,
1

8
, 64)

(3.30)

72

3.4. Finer-grained species

3.4.2 Evaluation and discussion

The introduction of species+ has extended the 5-tuple array reference charac-
terisations of section 3.3. This section discusses the following: 1) examples to
illustrate the advantage of the classification’s finer granularity, 2) limitations to
the details captured by species+, and 3) related program code classifications.
Note that a-darwin, as presented in section 3.3.3, is extended to automatically
extract species+ descriptions as well.

Advantages of a finer granularity

To illustrate the advantages of species+’s increased detail, the syrk example
from the PolyBench suite [117] as shown in figure 3.26 is discussed. When clas-
sifying this example as algorithmic species with respect to loops i and j, we find
an element access pattern for array B both as input and as output. Furthermore,
we find array A twice as input with the chunk pattern, in both cases accessing a
full row. This classification, as shown in figure 3.26, does not make a distinction
between the two accesses to array A. In contrast, when applying the 6-tuple classi-
fication species+ to array A, the results as shown in the bottom of figure 3.26 are
obtained. In contrast to the algorithmic species description, the 6-tuples capture
the difference between the two array accesses (a step for either the i or j-loop).
Furthermore, species+ also identifies the data-reuse of the array A originating
from the j-loop: every row is accessed N times for both A[i][k] and A[j][k].

1 for (i =0; i<=N; i++) {
2 for (j =0; j<=N; j++) {
3 B[i] [j] ∗= beta ;
4 for (k=0; k<=M; k++) {
5 B[i] [j] += alpha ∗ A[i] [k] ∗ A[j] [k] ;
6 }
7 }
8 }

B[0:N,0:N]|element ∧ A[0:N,0:M]|chunk(-,0:M) ∧

A[0:N,0:M]|chunk(-,0:M) → B[0:N,0:N]|element

RA[i][k] = (A, r, 〈[0..N][0..M]〉, 〈1,M〉, 〈1|0, 0|0〉, N |N)

RA[j][k] = (A, r, 〈[0..N][0..M]〉, 〈1,M〉, 〈0|1, 0|0〉, N |N)

Figure 3.26: An example from PolyBench’s syrk (top), its algorithmic species (middle), and
its 6-tuple characterisation (bottom).

As another example, consider figure 3.27, showing a backwards counting loop
with two reads to array C. Algorithmic species is unable to distinguish the two
reads. However, when using the 6-tuple classification, the results are as shown in
the right of figure 3.27. The difference between the two steps (−1 and 1) captures
the order in which C is referred, relating the two references to each other.

73

Chapter 3. Classifications of program code

1 for (i =7; i >=0; i−−) {
2 D[i] = C[i] + C[7− i] ;
3 }

RC[i] = (C, r, [0..7], 1,−1, 8)

RC[7−i] = (C, r, [0..7], 1, 1, 8)

C[0:7]|element ∧ C[0:7]|element → C[0:7]|element

Figure 3.27: Example of a backwards counting loop with two reads to array C (left), its
algorithmic species (bottom), and its 6-tuple characterisation (right).

Finally, the example of loop tiling as shown in figure 3.23 is re-evaluated. In
the example, code (lines 1–3) is transformed using a 2 by 2 tile (lines 4–8). The
tile-size is visible in the code through the step-sizes of the i and j loops and the
bounds of the ii and jj loops. However, with algorithmic species, the reference to
array E classify as ‘E[0:7][0:7]element’ in both cases. Now, with species+, it
is possible to capture the difference, as shown in equation 3.31.

original: (E,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8)

tiled: (E,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈2|0|1|0, 0|2|0|1〉, 4|4|2|2)
(3.31)

Limitations

Although the new 6-tuple characterisations are finer-grained than the 5-tuple char-
acterisations, it is still an abstraction of program code and can thus not capture
all relevant properties. As discussed in section 3.3.4, the array reference charac-
terisations will become over-approximations in such cases. An example of this is
the write access to the triangular matrix F as shown in lines 1–6 of figure 3.28.
Because the bounds of the j-loop change every iteration of the i-loop, F has to be
characterised as an over-approximation: (F,w, 〈[0..7][0..7]〉, 〈1, 1〉, 〈1|0, 0|1〉, 8|8).
The exact iteration domain can in this case be described as a polyhedron, as is
done in the work on array regions [46].

1 // Triangular matrix
2 for (i =0; i <8; i++) {
3 for (j=i ; j <8; j++) {
4 F [i] [j] = 0 ;
5 }
6 }

7 // Random re ferences
8 for (i =0; i <8; i++) {
9 G[rand ()%8] = 0 ;

10 }
11
12 // Fract ional indexing
13 for (i =0; i <8; i++) {
14 H[(i +1) /4] = 0 ;
15 }

Figure 3.28: Additional examples of loop nests to illustrate over-approximations.

As a second example, consider lines 7–10 of figure 3.28. Here, a random
reference to array G is shown, independent of the loop iterator i. With the 6-
tuple characterisation, (G,w, [0..7], 8, 0, 8) is obtained, classifying the code as if

74

3.4. Finer-grained species

referencing the entire array G every iteration. However, in reality, only one element
is referenced per iteration.

As a final example, lines 12–15 of figure 3.28 show fractional indexing with
an offset. Although it is possible to represent H[i/4] with a step of 1

4 , it is not
possible to represent the offset in H[(i+1)/4]. As an extension, the domain
could be allowed to include fractions for such non-affine array references. This
would yield (H,w, [14 ..2], 1,

1
4 , 8).

Related classifications

Earlier, section 3.1 gave an overview of a wide variety of algorithm classifications.
Now, species+ will be compared in more detail with closely related classifications.

Related to the 6-tuple characterisation are convex array regions [46]. Array
regions capture summaries of memory accesses (reads and writes) performed by
a function, a loop, or one or more statements. For example, the elements that
are read during a set of statements s with memory state σ for the basic example
of figure 3.13 can be described as R(s, σ) = {A[φ1] | 2 ≤ φ1 ≤ 7}. In this case,
σ is not used. It is used for example when describing the reads when considering
only the loop body of the example: R(s, σ) = {A[φ1] | φ1 = σ(i)}. The σ(i)
notation indicates that i takes a particular value based on the memory state σ

(the current loop iteration for this example). Array regions are described as a
convex polyhedron and are thus abstractions of program code, similar to our
domain description D. In contrast to our work, array regions do not describe the
complete access pattern, but merely capture our 6-tuple’s name N , direction A,
and domain D. Array regions are used for example to perform loop fusion and
fission, dependence analysis, and data transfer optimisations [72].

The Array-OL specification language [36] also shows similarities to our 6-tuple
representation. Array-OL is different from our work and the polyhedral model
in the fact that it models code at multiple levels. First of all, there is a task-
level representing loop nests as communicating tasks. An individual task is then
repeated according to Array-OL’s srepetition. At each repetition a task accesses
data as patterns. Each pattern is characterised by a paving matrix (P), a fitting
matrix (F) and a pattern shape (spattern). Furthermore, Array-OL provides an
origin vector (o) and the array size (sarray). Array-OL’s srepetition and P are
closely related to our repetition factor X and step S respectively. The patterns
(convex polytopes) are abstracted in our representation as the number of elements
E . We illustrate the similarities with species+ by considering only a single Array-
OL task and the A[i][k] access in figure 3.26 (let us assume that A[j][k] is
no longer present and the whole k-loop is the elementary task). The domain

of A is then captured as o =
(

0 0
)T

and sarray =
(

N M
)T

, the inner-loop

pattern as F = (1) and spattern = (M), and the repetition as P =
(

1 0
)T

and srepetition = (N2). In contrast to our work, Array-OL cannot be applied to
non-static affine loop nests and is not directly suitable for classification purposes.

75

Chapter 3. Classifications of program code

Other related classifications work on a different abstraction level. This includes
the representation of loop nests in the polyhedral model, such as the represen-
tation used in the integer set library isl [137]. In isl, iterations of a loop nest
are represented as integer points in a polytope using first order logic. In other
work, polyhedral process networks [28, 138] are introduced to provide a higher-
level polyhedral-based classification of program code. As discussed in detail in
section 3.1, the programming model Æcute [77] creates a decoupled access/exe-
cute specifications of program code. Finally, the language PENCIL [14] allows
programmers or compilers to create summary functions to describe references.

3.4.3 Conclusions

This chapter has introduced species+, a more fine-grained version of array refer-
ence characterisations as used as basis for the algorithmic species theory. Because
of the additional details captured by species+’s new 6-tuple characterisations, the
classification is a step down from the descriptive names and intuitiveness of al-
gorithmic species. However, it has been shown that species+ is able to capture
details which the original species could not, including loop tiling and backwards
counting loops. Such details can be relevant for performance and energy efficiency.
For example, tiling a GPU implementation of a stencil computation can make a
difference of a factor 3 in terms of performance [127].

With the original algorithmic species, species+, and a-darwin, a strong basis
has been set to address the challenges of programming and code generation for
parallel microprocessors. Because species and species+ are architecture-agnostic
classifications, they can help to achieve (performance) portability as well.

76

“Any sufficiently advanced technology is indistinguishable from magic.”

- Arthur C. Clarke (1973)

Chapter 4

Compilation using

algorithmic skeletons

Throughout this thesis we have seen that programming has become a challenging
task: programmers are faced with a variety of new parallel languages and are
required to have detailed architectural knowledge to fully optimise their appli-
cations. In particular, chapter 2 discussed the current and future challenges of
programmability and the related aspects performance, portability and productiv-
ity. To address these challenges, chapter 3 argued to start by adding structure to
the problem. This has led to algorithmic species, a classification to help recognise,
differentiate and understand different types of program code. This chapter will
use this classification to perform source-to-source compilation.

The programmability of microprocessors such as GPUs can be improved by a
compiler, a tool to automatically perform some of the manual programming steps
involved. Traditional compiler tasks involve performing both labour-intensive
tasks such as translation from a high-level programming language into machine
code, and low-level optimisations such as register allocation and loop unrolling.
Recently, compilers have included more advanced transformations (such as loop
skewing in Pluto [34]) or have been designed specifically to perform separate
(optimising) source-to-source compilation passes. An example of source-to-source
compilation is the transformation of CPU code (e.g. C/C++) into GPU code
(e.g. CUDA). This chapter focusses on such source-to-source compilers, because
they can address programmability issues by potentially improving performance,
portability and productivity. In particular, we discuss bones, a new source-to-
source compiler based on algorithmic skeletons.

Algorithmic skeletons [44] is a compiler technique motivated by the observation

77

Chapter 4. Compilation using algorithmic skeletons

of similarities across efficient code for particular classes of program code. The
technique is based on the use of parametrisable program code, known as skeletons
or skeleton implementations. An individual skeleton can be seen as template code
for a specific class of computations on a specific microprocessor. Users of skeleton-
based compilers are required to identify a skeleton suitable for their program
code and their target microprocessor, and can subsequently invoke the skeleton
to obtain program code for the chosen target. If no skeleton implementation is
suitable for the specific class or microprocessor, it can be added manually. Future
program code of the same class can then benefit from reuse of the skeleton code.
Benefits of skeleton-based compilation are among others the flexibility of extension
to other targets and the performance potential: optimisations can be performed
in the native language within the skeletons. Examples of recent skeleton-based
source-to-source compilers are [18, 40, 55, 126].

In this chapter we present bones, a new source-to-source compiler based on
algorithmic skeletons. In contrast to other skeleton-based compilers, bones uses
a formally-defined algorithm classification and does not require programmers to
manually identify classes nor to select a suitable skeleton. This is achieved by
using the algorithmic species of chapter 3 as a basis. We give an overview of the
relation of bones and species in figure 4.1. This chapter gives a survey of existing
source-to-source compilers targeting GPUs (section 4.1), a detailed description of
bones (section 4.2) and two of its main optimisations (sections 4.3 and 4.4), and
a detailed evaluation and discussion (sections 4.5 and 4.6).

automatic
extraction

source-to-source
compilation

C program code
with species

sequential C
program code

manual
extraction

algorithmic species theory
CUDA (GPU)

OpenCL (GPU)

OpenCL (CPU)

OpenMP (CPU)

HLS-C (FPGA)

target code

(BONES)

(ASET or A-DARWIN)

Figure 4.1: A graphical overview of the relation between the algorithmic species theory (chap-
ter 3) and the bones source-to-source compiler (this chapter).

4.1 A survey of source-to-source compilers

There are a large number of source-to-source compilers targeted at (partially) au-
tomating GPU programming. This section briefly introduces the most prominent
compilers and discusses several of them in more detail. The focus lies on source-
to-source compilers with a CUDA or OpenCL target. The following classes are
distinguished:

• Directives: Several C-to-CUDA source-to-source compilers use directives
in the form of pragma’s. These user-supplied directives translate directly to

78

4.1. A survey of source-to-source compilers

compiler transformations, addressing the more labour intensive tasks such as
host-accelerator memory transforms. Examples are hiCUDA [73] (discussed
in section 4.1.1) and compilers using OpenMP-like directives [91, 106]. Also
based on directives, but using CUDA both as input and output is the CUDA-
Lite [135] source-to-source compiler.

• Algorithmic skeletons: Existing work also uses the algorithmic skeletons
approach to target GPUs. The most prominent examples are SkePU [55]
(discussed in section 4.1.2) and SkelCL [126]. These are not implemented as
source-to-source compilers, but rather use C++ templates to invoke skele-
tons. Other skeleton approaches targeting CUDA include Muesli [56] and
the work by Sato et al. [121].

• Semi-automatic: OpenACC (see also section 2.3) is a semi-automatic
approach, as it performs code generation based on a combination of user-
supplied directives and static analysis. Two C-to-CUDA compilers are based
on OpenACC directives: PGI Accelerator [146] (discussed in section 4.1.3)
and HMPP Workbench [52].

• Fully automatic: We identify two source-to-source compilers based on
static analysis techniques: Par4All [22] and ppcg [139]. Both are dis-
cussed in more detail in section 4.1.4. Other automatic compilers are C-
to-CUDA [25] and a CUDA version of Pluto [29], but they are either not
publicly available or not fully functional.

• Domain-specific languages: Finally, several source-to-source compilers
are introduced as part of new domain-specific languages. Examples include
the Mint language [136], a medical DSL [100] and Chestnut [129].

To illustrate the programming style and the required programming effort for
the source-to-source compilers, we take the 1D stencil computation of figure 4.2
as an example throughout this section.

1 int N = 512∗512;
2 for (i =1; i<N−1; i++) {
3 B[i] = 0 .3∗A[i −1] + 0.4∗A[i] + 0 .3∗A[i +1] ;
4 }

Figure 4.2: A 1D stencil example used to illustrate existing source-to-source compilers.

4.1.1 Directives using hiCUDA

Source-to-source compilers based on directives rely on the help of programmers
to generate code. A common case is the use of annotations (e.g. pragmas) in
the source code that guide (or: direct) the compiler towards generating efficient

79

Chapter 4. Compilation using algorithmic skeletons

target code. A good example is the C-to-CUDA compiler hiCUDA [73], which is
discussed in this section.

Figure 4.3 applies hiCUDA directives to the example stencil code of figure 4.2.
The original code is still present (lines 1, 7 and 10), but a number of directives
have been added. First of all, array sizes have to be set in case of dynamically
allocated memory (line 2). Second, memory has to be allocated on the GPU (lines
3–4), copied between CPU and GPU (lines 3 and 13) and freed (line 14). The
kernel itself is defined in lines 5–12. Most of these directives translate directly
into CUDA statements or CUDA library calls.

1 int N = 512∗512;
2 #pragma hicuda shape A[N] B[N]
3 #pragma hicuda g l oba l a l l o c A[∗] copyin
4 #pragma hicuda g l oba l a l l o c B [∗]
5 #pragma hicuda ke rne l conv tb lock (N/256) thread (256)
6 #pragma hicuda l o o p p a r t i t i o n ove r tb l o ck over thread
7 for (i =1; i<N−1; i++) {
8 #pragma hicuda shared a l l o c A[i −1: i +1] copyin
9 #pragma hicuda b a r r i e r

10 B[i] = 0 .3∗A[i −1] + 0 .4∗A[i] + 0 .3∗A[i +1] ;
11 }
12 #pragma hicuda ke rne l end
13 #pragma hicuda g l oba l copyout B [∗]
14 #pragma hicuda g l oba l f r e e A B

Figure 4.3: The 1D stencil example annotated with hiCUDA directives.

Users of hiCUDA are still required to have GPU programming expertise. For
example, the programmer has to specify the number of threads and threadblocks
and has to specify which loops should be parallelised. Additionally, to use the
on-chip scratchpad memory, the programmer has to supply directives defining
which memory section to store locally and when to synchronize between threads
(lines 8–9 in figure 4.3). An advantage of hiCUDA is its inter-procedural support.
For example, ‘kernel’ directives can be placed around function calls, while other
directives can be placed within these functions. Furthermore, the code generated
by hiCUDA can be inspected and modified. However, the generated code is not
easily readable and is thus not suitable for further fine-tuning.

4.1.2 Algorithmic skeletons through SkePU

Applying algorithmic skeletons to many-core architectures such as GPUs has been
accomplished recently in several works, of which SkePU [55] is an example. SkePU
is publicly available and supports both CUDA and OpenCL as targets.

Figure 4.4 shows the SkePU implementation of the stencil example of fig-
ure 4.2. Seven skeletons are supported (map, mapArray, mapOverlap, mapRe-
duce, reduce, scan and generate), from which we select mapOverlap to match the
stencil code (line 13). The figure also shows the copying and conversion of arrays

80

4.1. A survey of source-to-source compilers

into the skepu::Vector containers (lines 8–12 and 15–17). Furthermore, the
functionality is defined (lines 2–4), and the kernel is invoked (line 14).

1 // Global funct ion d e f i n i t i on
2 OVERLAP FUNC(s t e n c i l , f loat , 1 , in ,
3 return 0 .3∗ in [−1] + 0 .4∗ in [0] + 0 .3∗ in [1] ;
4)
5
6 // Main funct ion
7 int N = 512∗512;
8 skepu : : Vector<f loat> A v(N) ;
9 skepu : : Vector<f loat> B v (N) ;

10 for (i =0; i<N; i++) {
11 A v [i] = A[i] ;
12 }
13 skepu : : MapOverlap<s t e n c i l> s t e n c i lK e r n e l (new s t e n c i l) ;
14 s t e n c i lK e r n e l (A v , B v) ;
15 for (i =0; i<N; i++) {
16 B[i] = B v [i] ;
17 }

Figure 4.4: The 1D stencil example using SkePU’s algorithmic skeletons.

SkePU implements skeletons as C++ libraries and therefore does not require
separate compilation: including the supplied header files and compiling with the
CUDA compiler is sufficient. This approach has also drawbacks: SkePU requires
the original code to be rewritten, increasing the programming effort and limiting
the portability. As shown in the example, SkePU also uses special data containers.
This will not pose a problem for cases where the whole program can be designed
using SkePU containers. However, for cases where kernels are considered as small
parts of a larger application, a copy-in and a copy-out is required. SkePU further-
more supports lazy memory copying, can generate code for systems with multiple
GPUs, and supports both CUDA and OpenCL.

4.1.3 OpenACC directives with PGI Accelerator

PGI Accelerator [146] is a commercial C and Fortran to CUDA source-to-source
compiler. It performs extensive code analysis, but also relies on programmer
input in the form of OpenACC directives. By combining compiler analysis with
a varying degree of user-directives, the user remains in control of the effort versus
performance trade-off.

An OpenACC version of the example of figure 4.2 is given in figure 4.5. In the
ideal case, PGI Accelerator requires only a single directive to delimit the scope
of acceleration (acc region, line 2) and will extract the remaining information
using static analysis: which arrays to copy-in or copy-out, which loops to paral-
lelise, which temporary results to store in on-chip memory, etc. If the compiler
cannot find such information statically, the user will be asked to supply additional
directives. Such a directive is provided for the stencil example (line 4) to inform
the compiler that the iterations of the loop are independent of each other.

81

Chapter 4. Compilation using algorithmic skeletons

1 int N = 512∗512;
2 #pragma acc r eg i on
3 {
4 #pragma acc for independent
5 for (i =1; i<N−1; i++) {
6 B[i] = 0 .3∗A[i −1] + 0 .4∗A[i] + 0 .3∗A[i +1] ;
7 }
8 }

Figure 4.5: The 1D stencil example using OpenACC directives and PGI Accelerator.

The PGI Accelerator source-to-source compiler provides information to the
user as to how the code is generated. The programmer can then supply additional
directives to guide the compiler in a specific direction. The compiler furthermore
analyses aspects such as thread occupancy, memory accesses, and register usage.

4.1.4 Automatic compilation with Par4All and PPCG

Several C-to-CUDA compilers are fully automatic: they are able to perform de-
pendence analysis and loop transformations without user annotations. The most
prominent examples are Par4All [22] and ppcg [139].

The code transformation and parallelisation framework PIPS is the main com-
ponent of the Par4All source-to-source compiler, which generates CUDA code.
The compiler takes unmodified C-code as input, such as the stencil code example
of figure 4.2. However, as PIPS is based on convex array region analysis [46], re-
strictions apply to the input code, requiring loops to have static control and affine
bounds and references [22, 46]. Par4All uses macros to hide CUDA statements
from the generated code to improve readability.

The compiler ppcg is based on the polyhedral model and generates CUDA
code. It has similar properties as Par4All: the compiler is fully automatic, but
imposes restrictions on input code, only static affine loop nests are transformed.
Both ppcg and Par4All are able to perform host-accelerator (e.g. CPU-GPU)
transfer optimisations.

4.1.5 Evaluation and discussion

This section discussed several different source-to-source compilers, including com-
pilers based on directives (hiCUDA and PGI Accelerator), compilers using algo-
rithmic skeletons (SkePU), and compilers based on static analysis (PGI Acceler-
ator, Par4All and ppcg). Table 4.1 gives a summary of their properties.

Par4All and ppcg are clear winners from a programmability, productivity,
and portability perspective, as they require no modifications to the input program
code (performance will be evaluated in section 4.5). When performance is not
considered, the other three discussed source-to-source compilers fall short in the
following two areas: 1) they are not fully automatic and require code restructuring

82

4.2. A skeleton-based source-to-source compiler

hiCUDA SkePU PGI Acc. Par4All ppcg

technique directives skeletons
directives static static
+ analysis analysis analysis

freely available X X × X X

CUDA target X X X X X

OpenCL target × X × X X

source-to-source X × X X X

fully automatic × × × X X

uses regular C data-types X × X X X

data-sizes needed at run-time X X × X X

generates readable code × N/A × X X

generates multi-GPU code × X × × ×

performs kernel fusion × × × X X

Table 4.1: Overview of properties of the five discussed approaches.

(SkePU) or annotations (hiCUDA and PGI Accelerator), and 2) they directly
produce binaries (SkePU) or generate human unreadable code (hiCUDA and PGI
Accelerator). The first shortcoming mostly affects application programmers who
are unfamiliar with parallel architectures and concurrent programming, while the
second shortcoming affects savvy programmers who leverage compilers to perform
the initial parallelisation and are willing to further optimise the resulting code.
This chapter addresses these shortcomings by using the algorithm classification
of chapter 3 to drive a source-to-source compiler based on algorithmic skeletons.

4.2 A skeleton-based source-to-source compiler

This section introduces bones, a source-to-source compiler based on algorithmic
skeletons. The compiler takes C program code annotated with class information
as an input (the algorithmic species from chapter 3). This ‘species information’
is used to determine which skeleton to use, and is additionally used to enable or
disable additional transformations and optimisations that are not possible within
the skeletons themselves. bones1 is written in Ruby and uses the C-to-AST
module cast2 to be able to work on abstract syntax trees (ASTs). The compiler
ships with a total of 15 pre-written skeletons for 5 different targets: CUDA for
NVIDIA GPUs, OpenCL for AMD GPUs, OpenCL for CPUs (both for the AMD
and the Intel SDK) and OpenMP for CPUs.

In contrast to existing skeleton-based compilers, bones uses the algorithmic
species information to select a suitable skeleton. This not only enables automation
of the tool-chain (by combining with aset or a-darwin), but also overcomes a
common criticism of skeleton-based compilers illustrated by questions such as
‘how difficult is it to select a suitable skeleton’ or ‘what if the user selects an
incompatible skeleton’.

1Source-code is available at http://github.com/cnugteren/bones/.
2cast can be found at http://cast.rubyforge.org/.

83

Chapter 4. Compilation using algorithmic skeletons

all code

classified

code

skeletons

species

species (* is a wildcard) skeleton
[*:*]|neighbourhood → [*:*]|element 1D-caching
[0:N,0:N]|chunk(-,0:N) * → * shuffling x1
[0:N,0:N]|chunk(-,0:N) ∧

[0:N,0:N]|chunk(-,0:N) * → * shuffling x2

*|element → *|shared reduction
all other species default

Figure 4.6: Illustration of the relation between algorithmic species and skeletons (left). Species
are classes of code (small circles) within the region of interest (large circle) that map many-to-
one to skeletons. The table on the right shows a practical case of a species to skeleton mapping
for the GPU-CUDA target, discussed further in section 4.2.1.

Algorithmic species map in principle one-to-one to skeletons: the compiler will
need to supply a skeleton for every species it wants to support. These skeletons
must be constructed in such a way that they are correct (and preferably opti-
mised) for all possible types of program code that belong to a particular species.
However, for practical reasons (to save work and code duplication and to be able to
accommodate an infinite amount of species), bones provides a species-to-skeleton
mapping such that multiple species can map to the same skeleton. For example,
for the GPU-CUDA target, algorithmic species of the form ‘neighbourhood →
element ’ and ‘neighbourhood ∧ element → element ’ both map to a single skele-
ton that performs explicit caching of the neighbourhood in the GPU’s on-chip
scratchpad memory. Figure 4.6 illustrates this many-to-one species-to-skeleton
mapping: a limited amount of skeletons cover a larger amount of species. bones
provides optimised skeletons for the species encountered so far in all performed
experiments and all used benchmarks. As shown in the figure, algorithmic species
classify a subset of all possible code: it considers only parallel loop nests.

skeleton Zskeleton X skeleton Y

skeleton library (per target)

invoke
skeleton

species X

species Y

input code

invoke
skeleton

transform
& optimise

transform
& optimise

combine
& optimise

target code

input: target

(e.g. GPU-CUDA)

(remaining non-classified code)

(not used for this example)

Figure 4.7: Illustration of the structure of the bones compiler for an example piece of input
code with two different species (left). The example shows the skeleton library (top) and the
transformation and optimisation passes.

84

4.2. A skeleton-based source-to-source compiler

The workings of bones are illustrated by figure 4.7. This figure shows an ex-
ample input with two code segments identified as two different species (‘species X’
and ‘species Y’). The compiler first loads and invokes the corresponding skeletons
for a given target. The target is specified by the user, but could be selected dy-
namically based on the invoked skeleton and data-sizes as is done by SkePU [48].
Next, the skeleton-specific transformations and optimisations are performed. Fi-
nally, bones combines the results to obtain target program code. The transfor-
mations and optimisations will be described in sections 4.2.2, 4.3 and 4.4.

Apart from using skeletons for the performance-critical parts of the code (the
kernels), bones also uses templates (or skeletons) to generate the remainder of
the code. These skeletons are target-specific, rather than target- and species-
specific, but still have parameters (e.g. array name or array size). Examples of
such skeletons include OpenCL/CUDA memory allocation, a host to accelerator
data transfer, initialisation of a platform, and the inclusion of header files. Using
skeletons for such tasks keeps the compiler lightweight and makes modification or
extension to other targets straightforward.

4.2.1 Example skeletons

The use of skeletons within bones is illustrated through an OpenMP skeleton.
Figure 4.8 shows the skeleton itself and its instantiation for the matrix-vector
multiplication example (~r = M · ~v, figure 3.2). The skeleton (left) highlights the
following keywords: parallelism represents the amount of potential parallelism
found within the species and code fills in the transformed code. For illustration
purposes, the example is heavily simplified, excluding comments, boundary and
initialisation code, function calls and definitions, and makes several assumptions,
such as the divisibility of the amount of parallelism by the thread count.

Additionally, figure 4.9 shows an example of a skeleton for the GPU-CUDA
target. This skeleton is specific to species of the form ‘0:N,0:N |chunk(-,0:N) →
0:N,0:N |element ’, similar to the matrix-vector multiplication example. A naive
mapping to CUDA results in uncoalesced accesses to the chunk array: subsequent
accesses will be made by the same thread. To re-enable coalescing in these cases
(important for performance), a special skeleton with a pre-shuffling kernel is in-
troduced. This skeleton (figure 4.9) has a kernel for the actual work (lines 1–8)
and a kernel to reorder the input array by re-arranging data in the GPU’s on-chip
memory (lines 10–21). The use of this skeleton implies a transformation in the
original code (e.g. from M[i][j] into M[j][i]), which is handled by the com-
piler. The skeleton highlights additional keywords (compared to Figure 4.8): ids
computes the identifier corresponding to the current thread, type gives the data
type, dims represents the array sizes, and params represents the chunk sizes.
Again, this skeleton is simplified, e.g. not showing boundary checks or host code.

Currently, bones provides 5 CUDA skeletons (see figure 4.6). This includes a
‘default’ skeleton for which the parallel loops are mapped to threads and the loop
body is mapped to a CUDA kernel. A variation of this is a skeleton for neighbour-

85

Chapter 4. Compilation using algorithmic skeletons

1 int count ;
2 count = omp get num procs () ;
3 omp set num threads (count) ;
4 #pragma omp p a r a l l e l
5 {
6 int t i d ;
7 int work , s ta r t , end ;
8 t i d = omp get thread num () ;
9 work = 〈parallelism〉/ count ;

10 s t a r t = t i d ∗work ;
11 end = (t i d+1)∗work ;
12
13 // Star t the p a r a l l e l work
14 for (g id=s t a r t ; gid<end ; g id++){
15 〈code〉
16
17
18 }
19 }

1 int count ;
2 count = omp get num procs () ;
3 omp set num threads (count) ;
4 #pragma omp p a r a l l e l
5 {
6 int t i d ;
7 int work , s ta r t , end ;
8 t i d = omp get thread num () ;
9 work = 32/ count ;

10 s t a r t = t i d ∗work ;
11 end = (t i d+1)∗work ;
12
13 // Star t the p a r a l l e l work
14 for (g id=s t a r t ; gid<end ; g id++) {
15 r [g id] = 0 ;
16 for (j =0; j <64; j++)
17 r [g id] += M[gid] [j]∗ v [j] ;
18 }
19 }

Figure 4.8: An example simplified skeleton for OpenMP (left) and the same skeleton invoked
for matrix-vector multiplication (right). Details and optimisations are omitted.

1 // CUDA kerne l for the ac tua l work (s imp l i f i e d)
2 g l o b a l void kerne l 0 (. . .) {
3 int gid = blockIdx . x∗blockDim . x+threadIdx . x ;
4 i f (g id < 〈parallelism〉) { // Incomplete b l ocks
5 〈ids〉
6 〈code〉
7 }
8 }
9

10 // CUDA kerne l for pre−s h u f f l i n g (s imp l i f i e d)
11 g l o b a l void kerne l 1 (. . .) {
12 int tx = threadIdx . x ; int ty = threadIdx . y ;
13 s h a r e d 〈type〉 b [1 6] [1 6] ;
14 int gid0 = blockIdx . x∗blockDim . x + tx ;
15 int gid1 = blockIdx . y∗blockDim . y + ty ;
16 int nid0 = blockIdx . y∗blockDim . y + tx ;
17 int nid1 = blockIdx . x∗blockDim . x + ty ;
18 b [ty] [tx] = in [g id0 + gid1 ∗〈dims〉/〈params〉] ;
19 sync th r ead s () ;
20 out [nid0 + nid1 ∗〈params〉] = b [tx] [ty] ;
21 }

warp 0

warp 1

warp 0

warp 1

warp 0

warp 1

off-chip reads from in

off-chip writes to out

local writes to b

local reads from b

w
a
rp

 0

w
a
rp

 1

Figure 4.9: An example simplified skeleton (left) for the GPU-CUDA target with a pre-shuffling
kernel (lines 10–21) to enable coalesced accesses. The shuffling is illustrated on the right.

hood type of computations, caching input data into the GPU’s on-chip scratchpad
memory. Furthermore, there are two skeletons with a pre-shuffling kernel (see fig-
ure 4.9), one for a single input and one for two inputs. Finally, there is a special
associative reduction skeleton for species in the form of ‘element → shared’. In
this case, an alternative is to use the default skeleton and ask the compiler to
replace all operations involving shared variables by atomic counterparts.

86

4.3. Optimising host-accelerator data transfers

4.2.2 Compiler optimisations

This section discusses basic optimisations: two more advanced optimisations are
discussed separately in sections 4.3 (host-accelerator data transfers) and 4.4 (ker-
nel fusion). bones performs various basic transformations and optimisations,
most of which are conditionally applied based on the algorithmic species. An
example of a basic transformation is the replacement of array indices and names
of input arrays in neighbourhood -based skeletons for GPUs by local indices and
names. This transformation is a matter of name-changing, the actual definition
of the local indices and the pre-fetching into local memories is performed within
the corresponding skeletons.

Furthermore, bones flattens data structures to a single dimension when gener-
ating GPU code (to satisfy CUDA/OpenCL requirements). Nested parallel loops
are also flattened, decoupling the number of loops from the threads or workitems
provided by CUDA and OpenCL. In contrast, many existing approaches (e.g. [22,
55, 139]) map multi-dimensional loops to multi-dimensional threads or workitems.
Although this might be a straightforward solution, it limits the applicability of
existing approaches to 2 or 3-dimensional loops and data structures. In contrast,
bones is able to handle arrays of any dimension and any degree of loop nesting.

Additionally, several performance-oriented transformations are made within
bones. This includes register file caching and thread coarsening [96]. Register
file caching can replace array accesses (mapped to off-chip memories) with scalar
accesses (mapped to registers) under certain conditions. For example, in matrix-
vector multiplication (figure 3.2), accesses to vector ~r can be replaced by scalar
accesses under the condition that a final store to ~r is added at the end of the
loop body. In case there are insufficient registers available, spilling will ensure
a neutral worst-case performance impact. Thread coarsening or thread merging
is a technique to increase the workload per thread. This comes at the cost of
parallelism, but could increase data reuse through locality or factor out common
instructions [92]. In bones, coarsening is implemented by replicating code line-
by-line (and renaming variables where required) and is only considered if the
species has data reuse. For example, in the case of 0:M,0:N |chunk(-,0:N) →
0:M,0:N |element, a total of N ·M elements are produced, while only M chunks
are available as input, resulting in the reuse of the input by a factorN . Coarsening
is only enabled for kernels with sufficient parallelism (e.g. at least 215 threads on
a GPU) but without divergent control flow. The performance effects of register
file caching and thread coarsening will be discussed in section 4.5.

4.3 Optimising host-accelerator data transfers

Several of today’s parallel microprocessors are designed as an accelerator : they re-
quire a host processor to dispatch tasks. Furthermore, they might have a separate
memory, requiring host-accelerator transfers of input and output arrays. Execut-

87

Chapter 4. Compilation using algorithmic skeletons

ing multiple kernels subsequently gives opportunities to optimise these transfers
in several ways [72, 81]: 1) transfers can be omitted (e.g. subsequent kernels use
the same data), 2) transfers can be done in parallel with host code (e.g. start
the copy as soon as the data is ready), and 3) transfers related to a previous
or upcoming kernel can run in parallel with kernel execution. In case the host
and accelerator share a memory (e.g. CPU, fused CPU/GPU), transfers can be
completely removed. This section discusses the optimisations for such cases first,
followed by optimisations for cases when the host and accelerator have their own
memory (e.g. GPU, Intel MIC).

To improve performance for the case in which the host and accelerator share
the same memory, bones enables zero-copy for the OpenCL targets using an
aligned memory allocation scheme. In this case, a memory copy can be saved
by performing a pointer-only copy (a zero-copy). bones enables zero-copy in
OpenCL for CPUs by fulfilling Intel’s two requirements: 1) using specific OpenCL
memory map and memory un-map functions, and 2), aligning all allocations to
128-byte boundaries [79]. To ensure aligned memory allocations in the original
code, bones provides an aligned dynamic memory allocation implementation and
ensures that stack arrays are aligned, as has been done in prior work [81].

1 copy−in (A, 1)
2 sync (1)
3 B ← A
4 copy−out (B, 2)
5 sync (2)
6 copy−in (B, 3)
7 copy−in (D, 3)
8 sync (3)
9 C ← B + D

10 copy−out (C, 4)
11 sync (4)

1 copy−in (A, 1)
2 sync (1)
3 B ← A
4 copy−out (B, 2)
5 sync (2)
6 copy−in (D, 3)
7 sync (3)
8 C ← B + D
9 copy−out (C, 4)

10 sync (4)

1 copy−in (A, 1)
2 copy−in (D, 3)
3 sync (1)
4 B ← A
5 copy−out (B, 2)
6 sync (2)
7 sync (3)
8 C ← B + D
9 copy−out (C, 4)

10 sync (4)

1 copyin (A, 1)
2 copyin (D, 3)
3 sync (1)
4 B ← A
5 copyout (B, 4)
6 sync (3)
7 C ← B + D
8 copyout (C, 4)
9 sync (4)

B ← A
1

C ← B + D

in A

out B

in B

out C

in D

2

3

4

B ← A
1

C ← B + D

in A

out B

out C

in D
2

3

4

B ← A
1

C ← B + D

in A

out B

out C

in D

2/3

4

B ← A
1

C ← B + D

in A

out B
out C

in D

3

4ti
m

e

at lower
priority

Figure 4.10: Pseudo-code illustrating several optimisation steps: original (left), partly opti-
mised (mid-left and mid-right), fully optimised (right). The second argument to the copy-in
and copy-out functions give the deadlines, corresponding to the numbers of the synchronisation
barriers. The figures below show time progressing from top to bottom (not to scale).

Next, consider the case where the host and accelerator have their own mem-
ory. After marking the identified algorithmic species with pragmas in aset (sec-
tion 3.2.3) or a-darwin (section 3.3.3), the tools are instructed to: 1) mark inputs
and outputs as copy-ins and copy-outs for the current kernel, and 2) add synchro-

88

4.4. Kernel fusion

nisation pragmas after the transfers. bones then generates a second asynchronous
host thread, receiving transfer requests and performing synchronisations. In its
most basic form, bones performs a copy-in of all required data before starting
a kernel, and performs a copy-out immediately afterwards. This is illustrated
through an example with two kernels, shown in the leftmost side of figure 4.10.

After producing the initial non-optimised form, aset or a-darwin perform
different optimisation steps recursively: 1) copy-ins directly after copy-outs are
removed (e.g. from left to mid-left in figure 4.10), 2) copy-ins are moved to the
front if the data is not written by the previous species (e.g. from mid-left to mid-
right in figure 4.10), 3) copy-outs can be delayed if if the data is not written by the
next species (e.g. from mid-right to right in figure 4.10), 4) unused synchronisation
barriers are omitted or merged, and 5) transfers are moved out of a loop body if
possible (not shown in this example). The performance impacts of the transfer
optimisations are discussed in section 4.5.

4.4 Kernel fusion

Loop fusion is a performance-oriented loop transformation that combines two loop
nests into a single new loop nest [116]. Its dual is loop distribution, creating new
loops by splitting a loop body. Because fusion has been extensively discussed
in the literature (e.g. [40, 47, 86, 116, 139]), we focus on a special case of loop
fusion: kernel fusion in the context of algorithmic species. Kernel fusion is specific
in the sense that fusion must not introduce loop-carried dependences as they
prevent parallel execution, and the loops that form the kernels are not considered
interchangeable or transformable: they are already forming species.

Kernel fusion (and loop fusion in general) can be beneficial in terms of per-
formance and energy efficiency for several reasons: 1) kernel start-up times can
be reduced (e.g. thread-launch overheads), 2) optimisation opportunities might
arise by merging the two loop bodies (e.g. common expression elimination), and
3) data locality can improve. On the other hand, kernel fusion can also degrade
performance, e.g. by introducing additional control flow or cache contention.

Loop fusion can be decomposed into three main aspects that are strongly
connected and often evaluated together [86]. Firstly, loop transformations such as
interchange and shifting can be applied to make fusion possible and advantageous
by creating compatible loop headers (step, bounds) [47]. Secondly, the safety of
fusion needs to be evaluated: dependences need to be preserved when fusing two
loops. Finally, the performance aspects need to be considered: fusion should only
be applied if it is beneficial for performance or energy efficiency. Because loop
headers can be made compatible before feeding C code into bones and aset/a-
darwin (using tools such as Pluto or PoCC), this section discusses only the
latter two aspects. Specifically, we re-formulate the problem of kernel fusion in
the context of algorithmic species, discussing whether fusion is legal and when it is
beneficial to be applied. Kernel fusion as discussed is implemented in a-darwin.

89

Chapter 4. Compilation using algorithmic skeletons

4.4.1 Legality of fusion

Consider two fusion candidate kernels X and Y with Y following X directly. Fusion
of these kernels is legal in any of the following cases:

• Independent case Kernel Y does not read from or write to any output
of kernel X and does not write to any input of kernel X. The only locality
advantages might come from a shared input, of which an example is shown
on the left hand side of figure 4.11.

• Equal access pattern Kernel Y reads from or writes to output(s) of kernel
X or writes to input(s) of X as long as the access patterns match. An
example is shown in the middle of figure 4.11, in which X writes to B and
Y reads from B with the same pattern: 0:7 |element.

• Compatible access pattern Kernel Y reads from or writes to output(s)
of kernel X and writes to input(s) of X for a combination of access patterns
that preserves loop-carried dependences. The specific combinations are pat-
terns with non-intersecting domains and patterns for which the intersecting
(but unequal) domains are part of chunk accesses (formal definition in equa-
tion 4.1). Examples are shown in figure 4.12.

An example of a case where loop fusion is illegal is shown on the right hand side of
figure 4.11. The access patterns to array A are incompatible (0:7 |element and 1:8
|element). Tools such as Pluto and PoCC can resolve this by shifting the second
loop by one iteration, creating matching access patterns.

1 for (i =0; i <8; i++) {
2 B[i] = A[i]+3;
3 }
4
5 for (i =0; i <8; i++) {
6 C[i] = A[i ∗2]∗4 ;
7 }

⇓

1 for (i =0; i <8; i++) {
2 B[i] = A[i]+3;
3 C[i] = A[i ∗2]∗4 ;
4 }

X

1 for (i =0; i <8; i++) {
2 B[i] = 0 ;
3 for (j =0; j <4; j++)
4 B[i] += A[i] [j] ;
5 }
6
7 for (i =0; i <8; i++) {
8 C[i] = 4∗B[i] ;
9 }

⇓

1 for (i =0; i <8; i++) {
2 B[i] = 0 ;
3 for (j =0; j <4; j++)
4 B[i] += A[i] [j] ;
5 C[i] = 4∗B[i] ;
6 }

X

1 for (i =0; i <8; i++) {
2 A[i] = 0 ;
3 }
4
5 for (i =0; i <8; i++) {
6 B[i] = A[i +1] ;
7 }

⇓

1 for (i =0; i <8; i++) {
2 A[i] = 0 ;
3 B[i] = A[i +1] ;
4 }

×

Figure 4.11: Three examples with two loop nests each (top) and the corresponding fused code
(bottom). For the left and middle examples fusion is legal, for the right example it is not.

90

4.4. Kernel fusion

1 for (i =0; i <8; i++) {
2 B[i] = 0 ;
3 for (j =0; j <4; j++)
4 B[i] += A[i] [j] ;
5 }
6
7 for (i =0; i <8; i++) {
8 A[i] [2] = C[i] ;
9 }

1 for (i =0; i <8; i++) {
2 va l = A[i] ;
3 for (j =0; j <4; j++)
4 B[i] [j] = va l ;
5 }
6 for (i =0; i <8; i++) {
7 B[i] [0] ∗= C[0] ;
8 B[i] [1] ∗= C[1] ;
9 }

1 for (i =0; i <8; i++) {
2 A[i] = 0 ;
3 }
4
5 for (i =0; i <8; i++) {
6 B[i] = A[i +400] ;
7 }

Figure 4.12: Examples of fusion candidates with compatible access patterns. Fusion is legal
because the domain intersection is either part of the chunk accesses (left and middle) or because
the domains are non-intersecting (right).

ALGORITHM 4.1: Legality of kernel fusion in the context of algorithmic species.

Input: array reference characterisations RX and RY for kernels X and Y
1 foreach combination of Rx ∈ RX and Ry ∈ RY do

2 if (Nx = Ny) and (Ax = w or Ay = w) then

3 if Dx 6= Dy or Ex 6= Ey or Sx 6= Sy then // equal access patterns

4 if Dx ∩ Dy 6= ∅ then // non-intersecting domains

5 if Rx and Ry are not compatible then // equation 4.1

6 return false
7 end

8 end

9 end

10 end

11 end

12 return true

Legality of kernel fusion can be translated into the 5-tuple notation as used
for the array reference-based theory of algorithmic species (section 3.3.1). For
kernels X and Y, this results in equation 4.1 (assuming a 1D array for simplicity),
to be applied to all array reference combinations (Rx,Ry) for which the names
match (Nx = Ny) and at least one of the references is a write. This reduces to a
domain intersection test for two element-type accesses, because in that case the
step and the number of elements are of unit size: Sx = Sy = Ex = Ey = 1.

∄(ix · Sx + ex = iy · Sy + ey)

with ix 6= iy and 0 ≤ ex < Ex and 0 ≤ ey < Ey

and Dlower
x ≤ ix ≤ D

upper
x and Dlower

y ≤ iy ≤ D
upper
y

(4.1)

a-darwin tests for the legality of fusion according to algorithm 4.1. The
algorithm iterates over all combinations of inputs and outputs (line 1), verifying
the three earlier discussed cases: independence (line 2), an equal access pattern
(line 3) and a compatible access pattern (lines 4 and 5). If the test fails for one of
the combinations, kernel fusion is not legal (line 6). Only if all combinations pass,

91

Chapter 4. Compilation using algorithmic skeletons

kernel fusion can be applied (line 12). The test for a compatible access pattern
uses the dependence test of equation 4.1, and is implemented as a combination of
the GCD-test and the Banerjee-test (see also section 3.2.3).

4.4.2 Performance considerations

After testing for legality of kernel fusion, a decision needs to be made whether and
how to apply kernel fusion. Deciding whether to apply kernel fusion is a problem
dependent on many factors, including architectural properties. Furthermore, loop
fusion in general (with respect to optimising performance) has been theoretically
proven to be a difficult problem, even for specific objectives such as maximising
data reuse [47]. Because of the complexity and the number of variables involved,
bones asks the user to decide whether or not to perform kernel fusion. Per
default, kernel fusion is performed when legal. Section 4.5.1 will evaluate the
benefit of fusion for a number of experiments.

There are different ways kernel fusion can be implemented when loop headers
are not perfectly matching. An example of non-matching loop bounds is given
on the left hand side of figure 4.13: the first loop runs from 0 to 5 (blue) and
the second from 2 to 8 (red). This results in tree code sections: A) only the first
loop is active, B) both loops are active, and C) only the second loop is active.
If there are no restricting dependences, the second loop can be shifted, obtaining
two sections: D) both loops are active, and E) only the second loop is active. In
the latter case, fusion can be applied in two different ways as shown in figure 4.13:
1) a conditional statement in the body bounds the execution of the D section, or
2) a second loop nest is created to complete the E section separately from the
main body. The first technique is applied in bones. Although this will create a
number of idle threads (depending on the length of the E section) and introduces
additional control flow, it does save the overhead of launching a second (typically
much smaller) kernel. In particular for a GPU, the overhead of idle threads is
negligible and the conditional statement will result in at most one warp with
branch divergence.

2

A

0

B C

1 2 3

3 4 5 6 7 8

4 5

2

0 1 2 3

3 4 5 6 7 8

4 5

D E

1 for (i =0; i <7; i++) {
2 i f (i <6) {
3 f (f i r s t [i]) ;
4 }
5 f (second [i +2]) ;
6 }

1 for (i =0; i <6; i++) {
2 f (f i r s t [i]) ;
3 f (second [i +2]) ;
4 }
5 for (i =6; i <7; i++) {
6 f (second [i +2]) ;
7 }

Figure 4.13: Kernel fusion for non-matching loop bounds. Shifting the second loop creates two
sections (D and E), which can be implemented either using a conditional statement (middle) or
a second loop nest (right).

92

4.5. Experimental results

4.5 Experimental results

This section evaluates bones experimentally in three steps: 1) by measuring the
benefits of the presented compiler optimisations, 2) by comparing the different
targets of bones to each other, and 3) by comparing the GPU-CUDA target of
bones to state-of-the-art C-to-CUDA compilers.

All experiments are based on the PolyBench/C 3.2 benchmark suite [117], the
same suite that was used in section 3.2.4 to evaluate algorithmic species. This
suite allows a head-to-head comparison against polyhedral-based compilers [22,
139] and enables automatic extraction of algorithmic species using aset or a-

darwin. From PolyBench’s 30 benchmarks, 28 contain parallelism in their current
form. In these benchmarks, a total of 60 species are identified (not including
nested species). However, several species are inner-loops with a small amount of
iterations and little work, resulting in execution times of less than millisecond,
dominated by start-up and measurement overheads. We therefore exclude: adi,
cholesky, dynprog, durbin, fdtd2d-apml, gramschmidt, lu, ludcmp,
reg detect, symm, trmm and trisolv. The exclusion of these benchmarks
can be automated by integrating a roofline-like performance model (e.g. [11]). All
in all, 34 not necessarily unique species are included, spread across 16 benchmarks.
Within a benchmark, multiple species are numbered sequentially.

The experiments in this section include all 5 targets supported by bones.
An overview of the targets and the corresponding experimental set-up is given
in table 4.2. The OpenCL and C compilers are instructed to auto-vectorise code
in order to use the CPU’s AVX vector instructions. The CPU’s Turbo Boost
technology is disabled. PolyBench is configured to use ‘large datasets’ and single-
precision floating point numbers. Results of multiple runs are averaged, and each
run starts with a warm-up dummy computation followed by a cache flush.

target language compiler hardware core count
GPU-CUDA CUDA NVCC 5.0 NVIDIA GTX 470 448 CUDA
GPU-OpenCL-AMD OpenCL AMD APP 2.7 AMD HD7950 1792 stream
CPU-OpenCL-AMD OpenCL AMD APP 2.7 Intel Core i7-3770 4 (8 threads)
CPU-OpenCL-Intel OpenCL Intel OpenCL ‘12 Intel Core i7-3770 4 (8 threads)
CPU-OpenMP OpenMP GCC 4.6.3 Intel Core i7-3770 4 (8 threads)
CPU-reference C GCC 4.6.3 Intel Core i7-3770 4 (8 threads)

Table 4.2: Configuration set-up for the 5 parallel targets and the reference target.

The latest versions of two state-of-the-art polyhedral-based compilers are in-
cluded for comparison: Par4All (version 1.4.1, May 2012) [22] and ppcg (ver-
sion 0.01, July 2013) [139]. Apart from C-to-CUDA [29] (limited to kernel gen-
eration only) and Pluto [34] (evolved into ppcg), these are the only available
fully-automatic compilers able to generate CUDA code directly from C. The tiling
options for ppcg are set to default to keep the results fully automatic: manual
tuning of the tiling parameter is not performed.

93

Chapter 4. Compilation using algorithmic skeletons

4.5.1 Evaluating compiler optimisations

Section 4.2.2 introduced the optimisations thread coarsening, register caching and
zero-copy host-accelerator transfers. Furthermore, sections 4.3 and 4.4 introduced
host-accelerator transfer optimisations and kernel fusion. This section evaluates
these optimisations separately.

Thread coarsening is evaluated for the GPU-CUDA target. Figure 4.14 shows
the speed-ups when applying coarsening (2x, 4x and 8x) over non-coarsened code.
Several benchmarks (2mm, 3mm, gemm, syr2k and syrk) benefit significantly
from coarsening. In fact, these benchmarks are the cases for which coarsening
is enabled by default based on the species (see section 4.2.2 for details) with a
factor 4 (based on experimental observations). Several other benchmarks that
use a coarsening factor of 4 per default benefit only slightly: doitgen, fdtd2d,
jacobi1d and jacobi2d. Other benchmarks (not using coarsening per default)
are either not affected or suffer from performance loss because of a reduced amount
of parallelism and/or degraded cache performance. A detailed study of the effects
of coarsening is beyond the scope of this work. Other work (e.g. [96]) discusses
the effects of coarsening on divergent control flow.

Figure 4.15 shows the impact of register caching for the GPU-CUDA target.
The results are either positive or neutral, and show a geometric mean speed-up of
1.8x. Register caching is in particular beneficial for the PolyBench suite, because
its benchmarks favour the use of array references above the introduction of new
temporary variables. The introduction of such variables (register caching) can
therefore greatly reduce the number of memory accesses made.

Zero-copy is a technique to perform a pointer-only copy for OpenCL programs
with a shared memory (e.g. CPUs). The left hand side of figure 4.16 shows the
benefits of omitting the data transfers for the Intel OpenCL CPU target. The
benefit is minimal for cases where the kernel execution time dominates the total
execution time (e.g. syr2k and syrk). In other cases (e.g. jacobi1d and
jacobi2d), the pointer-copies save significant time. In a few cases (e.g. 3mm),
the elimination of the data transfers can even improve cache behaviour.

The right hand side of figure 4.16 shows the speed-ups obtained by performing
the host-accelerator data transfer optimisations as described in section 4.3. The
speed-up is significant in cases where data transfers can be moved outside of loops
that contain species (e.g. jacobi1d and jacobi2d). Overall, this results in a
geometric mean speed-up of 1.4x.

Kernel fusion is evaluated in two parts. First, three combinations of two arti-
ficial loop nests are evaluated, which are shown in the bottom half of figure 4.17.
The first two loops contain unrelated computations (B ← A and D ← C), the
second set shares a read (B ← A and D ← A), and the last two share a read/write
access (B← A and D← B). The dimension N is set to 20482, and the work function
performs a configurable amount of self-multiplications (e.g. t1*t1*t1). The top
half of figure 4.17 shows the speed-ups of fused code over non-fused code for three
targets, timing kernel execution only. The following observations are made:

94

4.5. Experimental results

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

 2
m

m
−

1

 2
m

m
−

2

 3
m

m
−

1

 3
m

m
−

2

 3
m

m
−

3

a
ta

x
−

1

a
ta

x
−

2

b
ic

g
−

1

b
ic

g
−

2

c
o

rr
e

l−
1

c
o

rr
e

l−
2

c
o

rr
e

l−
3

 c

o
va

r−
1

 c

o
va

r−
2

 d
o

it
g

e
n

−
1

 d
o

it
g

e
n

−
2

fd

td
2

d
−

1

fd

td
2

d
−

2

1/8x

1/4x

1/2x

1x

2x

4x

0.05x 0.06x 0.05x

Coarsening factor 8

Coarsening factor 4

Coarsening factor 2

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

fd

td
2

d
−

3

fd

td
2

d
−

4

g

e
m

m

g

e
m

ve
r−

1

g

e
m

ve
r−

2

g

e
m

ve
r−

3

g

e
m

ve
r−

4

 g

e
s
u

m
m

v

ja
c
o

b
i1

d
−

1

ja
c
o

b
i1

d
−

2

ja
c
o

b
i2

d
−

1

ja
c
o

b
i2

d
−

2

 m
v
t−

1

 m
v
t−

2

 s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/8x

1/4x

1/2x

1x

2x

4x

Coarsening factor 8

Coarsening factor 4

Coarsening factor 2

Figure 4.14: Speed-ups of coarsened code over non-coarsened code for the CUDA target.

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m
−

1

2
m

m
−

2

3
m

m
−

1

3
m

m
−

2

3
m

m
−

3

a
ta

x
−

1

a
ta

x
−

2

b
ic

g
−

1

b
ic

g
−

2

c
o

rr
e

l−
1

c
o

rr
e

l−
2

c
o

rr
e

l−
3

c
o
va

r−
1

c
o
va

r−
2

d
o

it
g

e
n

−
1

d
o

it
g

e
n

−
2

fd
td

2
d

−
1

fd
td

2
d

−
2

fd
td

2
d

−
3

g
e

m
m

g
e

m
ve

r−
1

g
e

m
ve

r−
2

g
e

m
ve

r−
3

g
e

m
ve

r−
4

g
e

s
u

m
m

v

ja
c
o

b
i1

d
−

1

ja
c
o

b
i1

d
−

2

ja
c
o

b
i2

d
−

1

ja
c
o

b
i2

d
−

2

m
v
t−

1

m
v
t−

2

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x

Register caching enabled

Figure 4.15: Speed-ups of code with register caching enabled over code without register
caching for the GPU-CUDA target.

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m

3
m

m

a
ta

x

b
ic

g

c
o

rr
e

l

c
o
va

r

d
o

it
g

e
n

fd
td

2
d

g
e

m
m

g
e

m
ve

r

g
e

s
u

m
m

v

ja
c
o

b
i1

d

ja
c
o

b
i2

d

m
v
t

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x

Zero−copy enabled

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m

3
m

m

a
ta

x

b
ic

g

c
o

rr
e

l

c
o
va

r

d
o

it
g

e
n

fd
td

2
d

g
e

m
m

g
e

m
ve

r

g
e

s
u

m
m

v

ja
c
o

b
i1

d

ja
c
o

b
i2

d

m
v
t

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x

Transfer optimisations enabled

Figure 4.16: Speed-ups of code with zero-copy enabled over code with data transfers for the
Intel OpenCL CPU target (left) and speed-ups of host-accelerator transfer optimisations

over naive data transfers for the GPU-CUDA target (right). Execution time of the entire
benchmark is considered rather than performance of the individual kernels.

95

Chapter 4. Compilation using algorithmic skeletons

GPU−CUDA

compute intensity [amount of work]

s
p
e
e
d
−

u
p
 b

y
 f
u
s
in

g

0.8x

1.0x

1.2x

1.4x

1.6x

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

2

3● ●
●

● ●

●

●

●
●

● unrelated
shared reads
shared read/write

CPU−OPENMP

compute intensity [amount of work]

s
p
e
e
d
−

u
p
 b

y
 f
u
s
in

g

0.8x

1.0x

1.2x

1.4x

1.6x

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

2

4

● ● ● ●

●

●

● ● ●

● unrelated
shared reads
shared read/write

CPU−OPENCL−INTEL

compute intensity [amount of work]

s
p
e
e
d
−

u
p
 b

y
 f
u
s
in

g

0.8x

1.0x

1.2x

1.4x

1.6x

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

1

2

●
●

●

●

●

●

● ● ●

● unrelated
shared reads
shared read/write

1 for (i =0; i<N; i++) {
2 t1 = A[i] ;
3 B[i] = work (t1) ;
4 }
5 for (i =0; i<N; i++) {
6 t2 = C[i] ;
7 D[i] = work (t2) ;
8 }

1 for (i =0; i<N; i++) {
2 t1 = A[i] ;
3 B[i] = work (t1) ;
4 }
5 for (i =0; i<N; i++) {
6 t2 =A[i] ;
7 D[i] = work (t2) ;
8 }

1 for (i =0; i<N; i++) {
2 t1 = A[i] ;
3 B[i] = work (t1) ;
4 }
5 for (i =0; i<N; i++) {
6 t2 = B[i] ;
7 D[i] = work (t2) ;
8 }

Figure 4.17: Speed-up results when applying kernel fusion for three different targets (top)
for artificially created code (bottom): two unrelated loop nests (bottom left), two loop nests
sharing reads from A (bottom middle), and two loop nests sharing accesses to B (bottom right).
The numbered arrows in the graphs refer to phenomena discussed in section 4.5.1.

1. There is a measurable gain when fusing two kernels, even when they are
unrelated. This is mainly due to the increased amount of work per thread,
allowing for a more efficient execution. For example, common instructions
can be shared (e.g. the calculation of the thread index), the compiler has a
larger scope for optimisations, and latencies can be hidden more effectively.
Kernel launch overhead is also reduced, in particular beneficial for OpenCL.

2. Fusing two kernels can be beneficial for data locality when they access the
same data. For the GPU-CUDA target, this saves expensive off-chip accesses
for both sharing cases. For the CPU cases however, the only observed per-
formance increase comes from a shared read/write: OpenMP and OpenCL
load the value of the shared read twice.

3. The benefit of fusion for two unrelated CUDA kernels actually increases
when reaching a moderate amount of work (8–16). This is due to the fact
that the (memory) latencies can be hidden better. The relative benefit of
fusion decreases as work increases further, as the computations themselves
become the bottleneck.

4. Fusion can also decrease performance, as is observed in the OpenMP case.
Performance of the fused code is slightly worse (around 10%) at the tran-
sition between memory-bandwidth limited execution and compute limited
execution (amount of work ±32). This could be due to the increased register
usage of the fused version.

96

4.5. Experimental results

Second, kernel fusion is evaluated on the PolyBench suite. Based on algo-
rithm 4.1, four cases of fusion are found: 3mm (first two kernels), bicg (both
kernels), correl (first two kernels) and mvt (both kernels). In other cases, loop
fusion in general is possible (as available in ppcg), but kernel fusion in the con-
text of species is not. An example is 2mm, which allows the outer loops of the
two kernels to be fused at the cost of parallelism: the inner loops now become
part of the kernel body. Another example is atax, which allows fusion after loop
interchange of the second loop nest, again at the cost of parallelism. Table 4.3
shows the results of the cases where kernel fusion is legal. In three cases, kernel
fusion results in a significant slow-down due to worsened cache performance. In
other cases, minor speed-ups are obtained (up to 8%).

target 3mm bicg correl mvt

GPU-CUDA 1.00x 0.61x 1.01x 0.52x
CPU-OPENMP 0.96x 1.08x 1.00x 1.00x
CPU-OPENCL-INTEL 0.38x 1.07x 1.08x 1.03x

Table 4.3: Speed-ups when applying kernel fusion to PolyBench for three different targets.

4.5.2 Comparison of multiple targets

bones has three targets that execute on the same hardware: two OpenCL tar-
gets and an OpenMP target. Figure 4.18 shows a comparison of these targets
for individual kernels, compared to the reference C code (the input to bones).
On average, this results in speed-ups of 2.4x (Intel SDK OpenCL), 2.8x (AMD
SDK OpenCL) and 3.1x (OpenMP). Despite the use of the same hardware, there
are still significant performance variations. Differences include the lower thread
creation cost for OpenMP, different thread grouping and scheduling policies, and
different compilers (and thus also different auto-vectorisers). A detailed compar-
ison of the different targets is beyond the scope of this work, but can be found
for other benchmarks in the work by Shen et al. [124]. We furthermore note
that performance can be improved by first applying a parallelising and optimising
compiler, such as Pluto [34] or the work by Park et al. [109].

The PolyBench/C reference code used to produce the results of figure 4.18 is
naive and unoptimised. In fact, simply changing the default compiler (GCC) to
ICC (version 14.0.0) yields speed-ups in most cases (geometric mean 1.5x). These
speed-ups become even more significant when using ICC instead of GCC for the
generated OpenMP code (geometric mean 1.7x).

Next, figure 4.19 shows a comparison of performance across different hardware:
two GPUs and a CPU. The two orders of magnitude speed-up observed for some
of the GPU targets should be taken with a grain of salt: the comparison is against
naive single-threaded CPU code. The two GPUs show comparable performance,
a result of the higher theoretical performance of the AMD GPU on one hand
(2.8GFLOPS and 240GB/s versus 1.1GFLOPS and 133GB/s), and less optimised

97

Chapter 4. Compilation using algorithmic skeletons

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m
−

1

2
m

m
−

2

3
m

m
−

1

3
m

m
−

2

3
m

m
−

3

a
ta

x
−

1

a
ta

x
−

2

b
ic

g
−

1

b
ic

g
−

2

c
o

rr
e

l−
1

c
o

rr
e

l−
2

c
o

rr
e

l−
3

c
o
va

r−
1

c
o
va

r−
2

d
o

it
g

e
n

−
1

d
o

it
g

e
n

−
2

fd
td

2
d

−
1

1/2x

1x

2x

4x

10x
OpenCL (Intel SDK)

OpenCL (AMD SDK)

OpenMP

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

fd
td

2
d

−
2

fd
td

2
d

−
3

g
e

m
m

g
e

m
ve

r−
1

g
e

m
ve

r−
2

g
e

m
ve

r−
4

g
e

s
u

m
m

v

ja
c
o

b
i1

d
−

1

ja
c
o

b
i1

d
−

2

ja
c
o

b
i2

d
−

1

ja
c
o

b
i2

d
−

2

m
v
t−

1

m
v
t−

2

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x
OpenCL (Intel SDK)

OpenCL (AMD SDK)

OpenMP

Figure 4.18: Comparison of 3 multi-threaded CPU targets against single-threaded naive CPU
code (the reference input code to bones).

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m
−

1

2
m

m
−

2

3
m

m
−

1

3
m

m
−

2

3
m

m
−

3

a
ta

x
−

1

a
ta

x
−

2

b
ic

g
−

1

b
ic

g
−

2

c
o

rr
e

l−
1

c
o

rr
e

l−
2

c
o

rr
e

l−
3

c
o
va

r−
1

c
o
va

r−
2

d
o

it
g

e
n

−
1

d
o

it
g

e
n

−
2

fd
td

2
d

−
1

1/2x

1x

4x

10x

40x

100x

400x
CUDA (NVIDIA GPU)

OpenCL (AMD GPU)

OpenMP (CPU)

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

fd
td

2
d

−
2

fd
td

2
d

−
3

g
e

m
m

g
e

m
ve

r−
1

g
e

m
ve

r−
2

g
e

m
ve

r−
4

g
e

s
u

m
m

v

ja
c
o

b
i1

d
−

1

ja
c
o

b
i1

d
−

2

ja
c
o

b
i2

d
−

1

ja
c
o

b
i2

d
−

2

m
v
t−

1

m
v
t−

2

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

4x

10x

40x

100x

400x
CUDA (NVIDIA GPU)

OpenCL (AMD GPU)

OpenMP (CPU)

Figure 4.19: Comparison of performance across different hardware (see table 4.2): an NVIDIA
GPU running CUDA code, an AMD GPU running OpenCL code, and a CPU running OpenMP
code. The reference is the single-threaded naive CPU code that is used as input to bones.

98

4.5. Experimental results

OpenCL GPU skeletons on the other hand (compared to CUDA skeletons). The
GPU targets achieve a geometric mean speed-up of an order of magnitude over
OpenMP code, limited by several kernels that do not benefit as much as others
from GPU acceleration. Examples are the limited parallelism of correl-3 and
the strided (uncoalesced) memory accesses of mvt-1.

4.5.3 Comparison against the state-of-the-art

Two experiments are performed to compare bones with the state-of-the-art C-
to-CUDA compilers Par4All and ppcg. The first experiment evaluates the
individual kernels only: kernels are generated for each of the algorithmic species
in isolation using bones, Par4All, and ppcg. Figure 4.20 shows the results
in terms of speed-up of bones compared to Par4All and ppcg. The following
observations are made:

• bones shows significantly better performance (2x or more) for 21 kernels
compared to Par4All and for 7 kernels compared to ppcg.

• ppcg is measurably faster only for covar-2 (1.4x). This is a result of
parallelisation of only the outer-loop (in contrast to both loops for bones)
which allows tiling of the inner-loop (to improve data locality).

• Several kernels use a skeleton in the form of figure 4.9 to ensure coalesced
memory accesses, yielding significant speed-ups over both Par4All and
ppcg. The advantages over the default skeleton are 2.4x (atax-1), 1.8x
(bicg-2), 2.3x (gemver-4), 1.8x (mvt-1) and 7.8x (syrk). A related
skeleton with two pre-shuffling kernels is used for two other kernels, yielding
speed-ups over the default skeleton of 3.2x (gesummv) and 15.8x (syr2k).
The other PolyBench benchmarks use the default skeleton.

• In the cases of matrix-multiplication variants 2mm and 3mm, bones is on-par
with ppcg. In these cases, bones relies on caches and thread coarsening,
while ppcg performs loop tiling and uses the local memory.

• In many benchmarks (2mm, 3mm, doitgen, fdtd2d, gemm, jacobi1d,
jacobi2d, syrk, syr2k), bones performs thread coarsening, outperform-
ing Par4All. ppcg also performs thread coarsening in most of these cases,
but by a factor 2 instead of 4.

• The geometric mean speed-up of kernels generated by bones is 2.4x com-
pared to Par4All and 1.4x compared to ppcg.

The second set of experiments considers the entire benchmark (except for
data-initialisation), which corresponds to the static control part (or ‘scop’) of the
PolyBench benchmarks. Figure 4.21 shows the speed-up of bones compared to
Par4All and ppcg. Additionally, PolyBench/GPU [70] is included as a refer-
ence, which provides hand written non-optimised CUDA code (optimised hand

99

Chapter 4. Compilation using algorithmic skeletons

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m
−

1

2
m

m
−

2

3
m

m
−

1

3
m

m
−

2

3
m

m
−

3

a
ta

x
−

1

a
ta

x
−

2

b
ic

g
−

1

b
ic

g
−

2

c
o

rr
e

l−
1

c
o

rr
e

l−
2

c
o

rr
e

l−
3

c
o
va

r−
1

c
o
va

r−
2

d
o

it
g

e
n

−
1

d
o

it
g

e
n

−
2

fd
td

2
d

−
1

fd
td

2
d

−
2

1/2x

1x

2x

4x

10x

X X X

Bones compared to Par4All

Bones compared to PPCG
s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

fd
td

2
d

−
3

fd
td

2
d

−
4

g
e

m
m

g
e

m
ve

r−
1

g
e

m
ve

r−
2

g
e

m
ve

r−
3

g
e

m
ve

r−
4

g
e

s
u

m
m

v

ja
c
o

b
i1

d
−

1

ja
c
o

b
i1

d
−

2

ja
c
o

b
i2

d
−

1

ja
c
o

b
i2

d
−

2

m
v
t−

1

m
v
t−

2

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x

Bones compared to Par4All

Bones compared to PPCG

Figure 4.20: Performance of bones compared to Par4All and ppcg for the GPU-CUDA tar-
get (higher is in favour of bones). ppcg was unable to generate code for correl-2, doitgen-1
and doitgen-2 (marked by a red cross).

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

2
m

m

3
m

m

a
ta

x

b
ic

g

c
o

rr
e

l

c
o
va

r

d
o

it
g

e
n

fd
td

2
d

g
e

m
m

1/2x

1x

2x

4x

10x

X

368x 333x

X

0.27x

Bones compared to PolyBench/GPU

Bones compared to Par4All

Bones compared to PPCG

s
p

e
e

d
−

u
p

 (
lo

g
 s

c
a

le
)

g
e

m
ve

r

g
e

s
u

m
m

v

ja
c
o

b
i1

d

ja
c
o

b
i2

d

m
v
t

s
y
r2

k

s
y
rk

g
e

o
m

e
a

n

1/2x

1x

2x

4x

10x

X X X

19x 17x13x

Bones compared to PolyBench/GPU

Bones compared to Par4All

Bones compared to PPCG

Figure 4.21: Comparison of bones with Par4All, ppcg and hand-written PolyBench/GPU
code for the complete benchmarks. PolyBench/GPU is not available for doitgen, gemver,
jacobi1d, and jacobi2d (marked by a red cross).

100

4.6. Discussion

written code is not available). We observe that this hand written code is in many
cases significantly slower when compared to compiler generated code: on average
7.4x compared to bones. We furthermore note that the (experimental) option
to optimise CPU-GPU transfers for Par4All (com-optimisation) only sup-
ports static arrays and does not work for these benchmarks. The right hand side
of figure 4.16 gives an idea of the performance gains future versions of Par4All

might achieve when such optimisations are fully implemented. Figure 4.21 shows
that, in almost all cases, performance of bones is either on-par or better when
compared to the state-of-the-art. The geometric mean speed-ups are 1.9x and
1.0x when compared to Par4All and ppcg respectively. These results are not
as good as the results obtained for kernel execution only (figure 4.20). There are
two reasons for this:

1. Inter-kernel optimisations Kernel fusion is the only inter-kernel optimi-
sation performed by bones. In contrast, the other compilers are able to dis-
tribute loops (fission) and to interchange nested loops (whereas bones con-
siders the kernels to be fixed). The polyhedral model is well-suited for such
optimisations, allowing ppcg for example to do well on atax despite the
fact that both of its kernels individually perform worse compared to bones.
For this particular example, ppcg creates four kernels out of the original
two, enabling loop interchange and resulting in coalesced accesses. Such
optimisations (e.g. distribution) are currently not possible within bones,
but could be enabled by using Pluto as a front-end.

2. Host-accelerator data transfers Although bones already performs host-
accelerator transfer optimisations, ppcg is able to find additional optimi-
sations. An example is fdtd2d, for which ppcg moves several CPU-GPU
transfers to the outer ‘time’ loop. This demonstrates that there is still room
for further host-accelerator data transfer optimisations in bones.

4.6 Discussion

The integration of algorithmic species with a skeleton-based compiler has resulted
in a unique source-to-source compilation approach. This novel combination can
be seen as a way to profit from the benefits of skeleton-based compilation without
its main drawbacks.

Skeleton-based compilation has several benefits. Firstly, compilation requires
only basic transformations that can be performed at abstract syntax tree level,
omitting the need for intermediate representations that often lose code structure
and variable naming. This allows the compiler to generate readable code, enabling
opportunities for further fine-tuning and manual optimisation. Furthermore, the
skeletons themselves can be formatted to include structure and code comments
to improve readability. Secondly, skeleton-based compilation benefits from the

101

Chapter 4. Compilation using algorithmic skeletons

flexibility of being able to improve the compiler (by modifying the skeletons) or
extend to other targets (by writing new skeletons). An example is the recent
addition of an FPGA high-level synthesis (HLS) target. Finally, several ‘optimi-
sations’ within skeletons are not permutations of the original code. An example
is the additional pre-processing kernel of figure 4.9 (lines 10–21), which cannot be
described as a transformation of the original code.

Compared to other skeleton-based compilers, bones is the first that can be
used in an automatic tool-chain because of the integration of algorithmic species.
This removes the requirements of existing skeleton-based approaches (e.g. SkePU
and SkeCL) to manually select skeletons and perform code modifications. On top
of this, the integration with algorithmic species provides a clear, structured, and
formally defined way of using skeletons, which can be beneficial in cases where
manual classification is unavoidable.

However, the possibility of generating efficient code using skeletons and species
is limited. This is illustrated by figure 4.22, which numbers the two main reasons:
1) not all optimisations can be expressed in the form of a skeleton, and 2) algo-
rithmic species do not contain all performance relevant details. An example of the
first is thread coarsening, which can be applied (yes or no) based on the species,
but cannot be implemented in the form of a skeleton. An example of the sec-
ond is register caching, which is a traditional compiler optimisation independent
of the code’s algorithmic species. bones is therefore designed as a combination
between a skeleton-based compiler (with the previously discussed benefits) and a
traditional compiler (allowing for competitive performance).

performance

number of

skeletonscompiler

optimisations

theoretical max

species' max

1

2

Figure 4.22: Comparison of the theoretical achievable performance of traditional compiler
optimisations with skeleton-based optimisations. The numbers refer to performance limitations
discussed in this section.

Another aspect of skeleton-based compilation shown in figure 4.22 is the per-
formance with respect to the number of (optimised) skeletons implemented. The
more skeletons are provided for the different species, the higher the aggregated
theoretical performance. However, performance is limited by the earlier men-
tioned aspects (the two numbers in figure 4.22), but with a good reason: if an
increasing amount of detail is captured by the algorithm classification, imple-
menting skeletons converges towards implementing a library. In practise, a small

102

4.6. Discussion

amount of skeletons can already deliver good performance (in combination with
compiler optimisations). An example is a ‘default’ skeleton for the CUDA target,
which maps the species’ parallel loop iterations onto GPU threads.

Apart from being a combination of a skeleton-based compiler and a traditional
compiler, bones is also unique in the sense that it explicitly uses species as an
intermediate step. In this way, code analysis (aset or a-darwin) is separated
from the actual compilation (bones). This has two main advantages: 1) either of
the two steps can be replaced or reused in other work, and 2) the programmer can
help the compiler where needed by modifying species or manually adding species
to unclassified code.

We make a final note that bones is a proof-of-concept: many of the opti-
misations discussed in this chapter are in reality complex problems that require
thorough analysis. Examples are thread coarsening for divergent code [96], host-
accelerator transfer optimisations [72, 81] and kernel fusion [47, 86, 116]. Nonethe-
less, the experimental results for the PolyBench benchmark suite have shown that
the combination of skeletons and compiler optimisations within bones can deliver
competitive performance. In comparison to two state-of-the-art automatic com-
pilers (Par4All and ppcg), bones obtains geometric mean speed-ups of 2.4x
and 1.4x for CUDA kernels. Future work will be required to verify these numbers
for case-studies and other benchmarks. The targets other than GPU-CUDA have
not been compared against existing compilers, but do show significant speed-ups
compared to the single-threaded input code to bones.

103

Chapter 4. Compilation using algorithmic skeletons

104

“Arthur blinked at the screens and felt he was missing something important.
Suddendly he realised what it was. ‘Is there any tea on this spaceship?’ he asked.”

- Douglas Adams (The hitchhikers guide to the galaxy, 1979)

Chapter 5

Towards a programmable

GPU architecture

So far, this thesis has improved the programmability of GPUs by presenting
new program code classification techniques and a new source-to-source compiler.
Apart from this programming language and compiler-based approach, the pro-
grammability of GPUs can also be improved from a processor architecture point
of view. Although this chapter mainly considers modelling and performance in-
sight, its end goal is to propose architectural changes to improve programmability.

As discussed in chapter 2, GPUs use on-chip programmer-managed mem-
ory (scratchpad) and hardware-managed memory (cache) to counter the memory
wall [61]. In particular for integrated solutions with general-purpose memories
(e.g. ARM Mali, AMD Fusion), off-chip bandwidth is scarce: the GPU’s full
potential can only be exploited when using the on-chip memories efficiently.

The goal of a GPU’s on-chip memory is not to reduce latencies (as is the case
for CPUs), because GPUs are designed to hide their memory latencies through
fine-grained multi-threading. Instead, the GPU’s on-chip memories serve the
purpose of reducing the off-chip memory traffic. An increased cache hit rate will
translate to performance improvements for memory-intensive programs, as off-
chip memory traffic (the performance limiting factor) is decreased proportionally.
In fact, many GPU programs are memory bandwidth intensive: for an example
set of benchmarks, this is as much as 18 out of 31 [84]. Specific examples of cache
optimisations include cache blocking for sparse matrix vector multiplication (5x
speed-up) [149] and tiling for a stencil computation (3x speed-up).

With programming models such as CUDA and OpenCL, programmers create a

105

Chapter 5. Towards a programmable GPU architecture

large number of independent1 threads that execute a single piece of program code
(a kernel). Still, microprocessors such as the GPU do not exploit the potential
of spatial and temporal data-locality enabled by this independence. Therefore,
section 5.2 proposes locality-aware thread scheduling : changing the schedule of
threads, warps and threadblocks to match a kernel’s memory access patterns.

To get insight into locality and cache behaviour, section 5.1 first presents a
detailed model of the GPU’s caches. This model is created to evaluate the quality
of thread schedules in the context of locality-aware thread scheduling, but can
also be used to perform design space exploration of the cache parameters.

NVIDIA’s Fermi architecture is used as an example throughout this chapter.
Fermi has up to 16 cores, each containing 32 processing elements and a 64KB on-
chip data memory, configurable as a combination of a scratchpad and a L1 cache
(16/48KB or 48/16KB). All cores share an L2 cache of up to 768KB. Threadblocks
are mapped in their entirety onto a core. Together, threads from one or more
threadblocks can form a set of active threads on a single core. Such a set of active
threads executes concurrently in a multi-threaded fashion as warps: groups of 32
threads executing in lock-step in an SIMD-like fashion on a single core, dividing
the workload over the core’s processing elements [107].

Figure 5.1 shows an example of a 16KB 4-way associative L1 cache, as is
available in Fermi GPUs [147]. The cache can store 128 cache-lines of 128 bytes
each [147]. The 128 lines are divided over 32 sets, each containing 4 lines: every
memory address is mapped onto one of the sets of the cache using a mapping
function. Reads to the off-chip memory are cached in the L1 cache, writes are
not. The GPU’s cache replacement policy is unknown, however, GPGPU-Sim [27]
assumes a least-recently-used (LRU) policy, although no proof is given.

way 1

line

way 2 way 3 way 4

set 1

set 2

set 3

set 32

line line line

line line line line

line line line line

line line line line

Figure 5.1: A 16KB 4-way associative L1 cache with 128 byte lines, as found in Fermi GPUs.

5.1 A detailed GPU cache model

Since GPU’s rely on their on-chip memories to reduce off-chip memory traffic,
optimising GPU programs for cache locality has become important for perfor-

1Independent apart from explicit per-block synchronisation barriers.

106

5.1. A detailed GPU cache model

mance and energy. However, to be able to perform cache locality optimisations
efficiently, insight into the types of cache misses and a prediction of the amount
and type of cache misses is essential, as shown for example in [24, 32, 83, 119].
A cache model can also be used to guide compilers to select their optimisation
parameters, e.g. a loop-tiling factor and a thread coarsening factor. An example
is the polyhedral model based C-to-CUDA compiler ppcg [139], which leaves the
problem of tile-size selection to the programmer because of a lack of insight into
cache behaviour. Additionally, a model can accelerate design space exploration,
i.e. finding cost-efficient values for cache parameters such as associativity or the
cache-line size. An analytical cache model can thus help to obtain insight into
cache usage, to guide programmers and compilers, and to evaluate the effects of
cache parameters on cache miss rates.

A well-known cache model is the 3C model [75], distinguishing three types of
cache misses: 1) compulsory (or cold): misses because of a first time access, 2)
capacity: misses because of a limited cache size, and 3) conflict: misses due to
a limited cache associativity or a non-ideal replacement policy. To estimate the
amount of cache misses based on the 3C model, a reuse distance profile (or ‘stack’)
can be constructed from a memory access trace [32]. The reuse distance theory
keeps track of memory requests, moving recently used addresses to the top of an
address stack. Addresses not yet present in the stack are the compulsory misses,
and addresses with a stack depth larger than the cache size are the capacity
misses. Although this model does not take conflict misses into account, it gives a
good lower bound for the total miss rate on sequential architectures [32] and even
on multi-core CPUs [122].

Existing performance and power models for GPUs (e.g. [26, 76]) have not
included a cache model up to now: they are only valid for (older) GPUs without
data caches. However, understanding cache behaviour is important as off-chip
memory bandwidth is becoming increasingly scarce relative to compute power [61].
The main challenges of creating a cache model for GPUs lie in the execution model:
as we will see in this section, fine-grained multi-threading and parallelism make
it non-trivial to find the order in which memory requests appear to the cache.
Therefore, this work focuses on the GPU’s L1 data caches: after it is known in
what order memory accesses appear in the L1 cache and which of those miss,
existing multi-core CPU models can be applied to model the GPU’s L2 cache.
Because reuse distance theory can only be applied to an ordered memory access
trace, it is not directly suited for GPUs. This section therefore extends the reuse
distance theory to model GPU caches. The following extensions are presented:

1. The reuse distance theory is adjusted to match the GPU’s parallel ex-
ecution model (section 5.1.3). This includes modelling threads, warps,
threadblocks, cores, and sets of active threadblocks.

2. The GPU’s memory latency is modelled by keeping track of in-flight ac-
cesses and their arrival times, introducing a new type of misses: latency

107

Chapter 5. Towards a programmable GPU architecture

misses (section 5.1.4). Furthermore, the memory’s non-uniformity is mod-
elled by sampling from a half-normal distribution.

3. Limited associativity is modelled by creating a private reuse distance stack
per cache set (section 5.1.5). The GPU’s mapping of addresses to sets is
identified through a micro-benchmark.

4. The effects of miss-status holding-registers (MSHRs) are modelled, stor-
ing in-flight memory request information (section 5.1.6).

5. Threads within a warp are executed in lock-step, but individual warps can
make different progress. This warp divergence is modelled by simulating
a thread-pool from which warps can be selected for execution (section 5.1.7).

The model is implemented in C++ (optimised for performance) and the source-
code is available on-line2, including a custom CUDA memory access tracer for
the Ocelot emulator [50] (section 5.1.8). Apart from proposing the 5 extensions
to the reuse distance theory, this section also: 1) finds two architectural details
through micro-benchmarking (section 5.1.9), 2) validates the model for two cache
configurations and for two benchmark suites (section 5.1.10), and 3) demonstrates
the usability of the model for design space exploration by showing an example
cache parameter sweep (section 5.1.11).

The GPU’s L1 cache handles only off-chip loads: stores are handled by the
L2 cache only, not by the L1 cache [107]. Therefore, only loads are considered,
although the cache model can be applied to stores as well.

5.1.1 Related work

There is only a single other complete GPU cache model presented in the literature
(to the best of our knowledge). This model by Tang et al. [132] is also based on
reuse distance theory. However, there are a number of reasons why we propose a
new cache model. First, in contrast to our work, Tang et al. model only a single
threadblock, assume warps to execute in lock-step, do not model MSHRs and the
mapping of addresses to sets, and do not give any details on the used memory
latency model. Second, their validation is very limited: 1) they validate against a
GPU simulator, not against real hardware, and 2) they include only basic, hand-
picked kernels with non-representative input data-sizes. Third, their model is
limited to kernels that can be statically analysed. In contrast, we support any
GPU kernel: we use an emulator to generate traces. Our final reason is practical:
their model is not available in the form of source-code or binary.

Another cache model [108] is part of a performance model of a complete GPU,
but assumes hit and miss rates to be given. Furthermore, other work has used
reuse distance to analyse non-GPU multi-core and many-core workloads [43, 120,
122]. In contrast to our work, they investigate cache contention caused by running

2Source-code is available at ‘http://github.com/cnugteren/gpu-cache-model/’.

108

5.1. A detailed GPU cache model

multiple programs on different cores. Because they do not target GPUs, many of
their assumptions (e.g. no data reuse among threads, execution order known) are
not valid for our work (and vice versa).

5.1.2 Background: reuse distance theory

This section briefly introduces reuse distance theory. The used cache-related
terminology is as follows [38]. ‘Cache-line’ describes a location in the cache,
while ‘cache-block’ refers to the data that goes into a cache-line. Furthermore, S
represents the number of sets in a cache.

Given an ordered memory access trace, a reuse distance profile (or stack) [32]
can be computed as follows. For each access, the reuse distance is the number
of unique addresses accessed between this access and the most recent previous
access to the same address. When there is no previous access, the distance is set
to infinity (∞). Constructing a reuse distance profile can be done at for example
address granularity or at cache-line granularity. An example of both is given in
table 5.1, assuming cache-lines of 4 elements (time progresses from left to right).

access x[0] x[5] x[3] x[9] x[3] x[3] x[5]

address 0 5 3 9 3 3 5
distance ∞ ∞ ∞ ∞ 1 0 2

cache-line 0 1 0 2 0 0 1
distance ∞ ∞ 1 ∞ 1 0 2

Table 5.1: Example of reuse distance computation, assuming a cache-line size of 4 elements.

A reuse distance profile can be used directly to obtain cache hit/miss rates.
Given a fully-associative cache of n lines with a least recently used (LRU) replace-
ment policy, any access with a reuse distance d larger than or equal to n (d ≥ n)
will miss. Vice versa, when d < n, the access will hit in the cache. In this way,
the reuse distance profile at cache-line granularity gives the compulsory miss rate
(d = ∞) and the capacity miss rate (d ≥ n and d 6= ∞). For the example in
table 5.1, given a cache size of 2 lines, we find 3 compulsory misses (42%), and
1 capacity miss (14%). This can also be visualised by constructing a histogram,
containing all necessary data to compute compulsory and capacity miss rates. A
histogram for this example is given in figure 5.2 (at cache-line granularity).

distance 0 1 2 ∞
frequency 1 2 1 3

0 1 2

reuse distance

fr
e

q
u

e
n

c
y
 (

%
)

0
1

0
2

0
3

0

Figure 5.2: Table 5.1’s reuse distance profile as a table (left) and as a histogram (right).

109

Chapter 5. Towards a programmable GPU architecture

5.1.3 Parallel execution model

A GPU typically executes thousands of small, light-weight threads. Because of the
parallelism expressed in the execution model, these threads can to some extent be
executed independently on different cores. Furthermore, due to limited resources
(e.g. register file, scratchpad memory), not all threads can be active at the same
time, i.e. eligible for execution. Tang et al. [132] argue that there is limited reuse
across different threadblocks on the same core: they model only a single block of
threads on a single core. To create a more realistic model, we do model complete
sets of active threads (one or more threadblocks). Furthermore, we model multiple
of such sets and multiple cores (because the workload can vary for different cores).

To determine which threads execute together as a set of active threads on a
single core, we follow Fermi’s execution model (an example is shown in figure 5.3).
First, threadblocks are divided round-robin over the cores until they are full.
Then, a new threadblock is scheduled when another threadblock is done (first-
done, first-serve). For each core, threadblocks are grouped in sets of active threads
according to the block-size and the resource limitations as listed in section G.1
of the CUDA programming guide [107]. Furthermore, threads in a warp are
scheduled simultaneously. Determining the scheduling order among warps in a
set of active threads is not straightforward (e.g. dependent on thread workload
and cache contents): this is approximated step-by-step in the following sections.

1 threadblock

16 warps

512 threads

core 0

core 1

0 512 1024 1536

3 threadblocks

1 active set

in
s
tr

u
c
ti
o

n
s threads

(instr. 0 of the kernel)

(instr. 1 of the kernel)

per core execution order

N-1

Figure 5.3: Visualisation of the GPU’s execution model for an example with blocks of 512
threads and 2 cores (left), and the execution order (blue arrows) for a kernel with 2 load
instructions per thread, round-robin scheduling over warps, and 3 active threadblocks (right).

Transforming the parallel execution model into an ordered memory access
trace3 can be done by: 1) applying the GPU’s thread-scheduling policy, and 2) by
taking into account pipeline and memory latencies. For now, we assume a basic
round-robin scheduling policy among warps in a set of active threads (divergence
is discussed in sections 5.1.6 and 5.1.7), and zero-latency hardware (latencies
are discussed in section 5.1.4). Now, for a given kernel, its execution can be

3The traces used are not ordered since they are not obtained from simulation: they are rather
unordered lists of memory accesses and only contain ordering information with respect to a
single thread. Simple trace example: thread 0 addr 109 782 110, thread 1 addr 209 882 210.

110

5.1. A detailed GPU cache model

sequentialised to obtain an instruction trace. We illustrate this with an educa-
tional example: a kernel with 4 threads, each performing 2 loads (x[2*tid] and
x[2*tid+1], for which ‘tid’ denotes a thread’s unique identifier). Given the
round-robin scheduling of threads and no latencies, we obtain the reuse distances
(for lines) as shown in table 5.2, assuming a cache-line size of 4 elements, a single
thread per warp, and only a single set of threads on a single core.

instruction 0 0 0 0 1 1 1 1
thread ID 0 1 2 3 0 1 2 3

address 0 2 4 6 1 3 5 7
cache-line 0 0 1 1 0 0 1 1

distance ∞ 0 ∞ 0 1 0 1 0

Table 5.2: Reuse distance computation for a GPU for an example with 4 threads, each per-
forming 2 loads. A cache-line size of 4 elements is assumed.

However, before a reuse distance profile can be constructed from a given thread
order, memory requests need to be combined according to the GPU’s memory
coalescing capabilities. Coalescing is applied in specific cases, for example when
threads from a single warp access the same cache-line. Coalescing is implemented
according to the specifications of the GPU architecture, as described in section
G.4.2 of the CUDA programming guide [107].

5.1.4 Memory latencies

In reuse distance theory for sequential processors it is assumed that either: 1)
memory latencies are non-existent, or 2) memory accesses cannot overtake each
other. Although individual threads on a GPU do execute kernel code in-order,
above assumptions are not valid when considering multiple (concurrent) threads.
Moreover, the GPU’s memory latencies are typically high compared to CPU laten-
cies. Therefore, reuse distance theory is extended to model the GPU’s latencies.

We first introduce the notion of time. Every column in the reuse distance
theory is now assigned with a monotonously increasing time-stamp4. Now, each
access is assigned a specific latency to delay its effect in the reuse distance theory.
We illustrate this based on the same example as shown in table 5.2 with 2 accesses
and 4 threads. Table 5.3 shows the updated results: every memory request occurs
at a fixed time (0–7) and is assigned a latency (a fixed value of 2 in this example).
Accumulation of an access’s latency with its issued time-stamp determines when
the request will have effect in the cache. This is shown in the ‘effect at ’ row of
table 5.3. Now, computation of the reuse distances is no longer based on the
‘cache-line’ row, but on the new ‘cache effect ’ row, as shown in the table. In this
particular example, the cache-line data is shifted by 2 time-stamps (highlighted).

Adding the notion of time and latency to the reuse distance theory changes
the reuse distances obtained. This can be seen for example by comparing the

4These time-stamps are not meant to reflect actual processor clock-cycles or time.

111

Chapter 5. Towards a programmable GPU architecture

time 0 1 2 3 4 5 6 7 8 9

instruction 0 0 0 0 1 1 1 1 - -
thread ID 0 1 2 3 0 1 2 3 - -

address 0 2 4 6 1 3 5 7 - -
cache-line 0 0 1 1 0 0 1 1 - -
cache effect - - 0 0 1 1 0 0 1 1

distance ∞ ∞ ∞ ∞ 0 1 0 1 - -

hit/miss m m m m h h h h - -
latency 2 2 2 2 2 2 2 2 - -
effect at 2 3 4 5 6 7 8 9 - -

Table 5.3: Extended reuse distance theory with a fixed latency of 2. The same example with
2 loads per thread and 4 threads in total is considered.

distances found in tables 5.2 and 5.3. The addition of latencies can thus transform
capacity misses in hits and vice-versa. However, this approach can also introduce
additional infinite distances (∞) that are not compulsory misses. To repair this,
the notion of latency misses is introduced: requests that miss in the cache because
an earlier request to the same cache-line is still in-flight.

So far, we have modelled a fixed latency. To better reflect reality, two addi-
tional aspects are also modelled: 1) conditional latencies applied depending on the
reuse distance, and 2) non-uniform memory latencies. This requires a distinction
between cache hits (to model the pipeline latency) and cache misses (to model
the memory latency). This requires us to embed information about the cache size
in the model, making the reuse distance profile no longer cache-size independent.

The example of table 5.3 is extended to include a hit latency of 0 and a miss
latency of 2. Assuming a cache-size of 2 lines, the results as shown in table 5.4
are obtained. We observe that the reuse distances change again, influenced by
the reduced latency of the last 4 memory accesses. Furthermore, we note that
multiple ‘cache effects’ can now occur simultaneously at a single time-stamp in
the model (highlighted in the table). Such simultaneous accesses are handled in
the order in which the memory accesses were issued.

time 0 1 2 3 4 5 6 7

instruction 0 0 0 0 1 1 1 1
thread ID 0 1 2 3 0 1 2 3

address 0 2 4 6 1 3 5 7
cache-line 0 0 1 1 0 0 1 1
cache effect - - 0 0 1 0 1 0 1 1

distance ∞ ∞ ∞ ∞ 0 0 1 0

hit/miss m m m m h h h h
latency 2 2 2 2 0 0 0 0
effect at 2 3 4 5 4 5 6 7

Table 5.4: Reuse distance theory with conditional latencies: 2 for a cache miss and 0 for a hit.

112

5.1. A detailed GPU cache model

This theory is extended to a more realistic model by clipping the ‘effect at’
time to the time of a still in-flight request for the same cache-line (if present).
This will for example change the ‘effect at’ time of the request at time-stamp 1 in
table 5.4 from 3 to 2, as the request for line 0 was already made at time-stamp 0.

Finally, the non-uniform latency of accessing the GPU’s off-chip memory is
modelled. Because a detailed model of the memory latency is beyond the scope of
this work (it requires a full GPU model or simulator, including e.g. the pipeline
and interconnect), a probabilistic approach is taken. The memory latency is mod-
elled as λmin + |N (0, σ2)|: a fixed minimum latency λmin offset by the absolute
value of a normal distribution N (µ, σ2) with zero mean, i.e. a half-normal distri-
bution. Parameters are the memory’s best-case latency λmin and a measure for
the its non-uniformity: the standard deviation σ of the half-normal distribution.

The ‘latencies’ discussed in this section are not real latencies: the cache model
is not a complete GPUmodel and does not have a notion of actual clock cycles. For
example, there can be a varying number of non-memory operations between two
memory accesses, affecting the latency between subsequent memory operations.
To model the effects of non-memory operations would require integration with a
complete GPU model, which is beyond the scope of this work. Therefore, the
latencies in the model should be seen as a way to capture the global ordering
roughly rather than as a way to obtain an exact reuse distance profile.

5.1.5 Cache associativity

The reuse distance theory models the compulsory and capacity misses, but does
not take into account misses caused by the limited associativity of a cache (part
of the conflict misses). It has been shown that such misses form a relatively small
percentage of the total amount of misses for sequential processors, even in the case
of a direct mapped cache [32]. However, typical GPU programs are more sensitive
to associativity, because they often show regular memory access patterns on large
data structures (e.g. matrix or image operations). To improve the accuracy of
our model, we extend the reuse distance theory to model cache associativity.

The reuse distance theory can be extended to model associativity as follows.
Instead of keeping track of a single reuse stack, a private stack is created for each
set in the cache. In that way, a set becomes a small cache with a size in lines
equal to the number of ways, i.e. the associativity. For a fully-associative cache,
this reduces again to a single stack because it has only a single set.

Along with the introduction of multiple sets (and their corresponding reuse
stacks), we need to define a mapping of memory addresses to sets. Such a mapping
can be either obtained directly by taking the last log2(S) bits from the line address,
or by a more advanced hashing function, creating a hash-associative cache [38].
The simulator GPGPU-Sim [27] uses a direct mapping for Fermi GPUs, but does
not claim that this is realistic. Therefore, because Fermi’s mapping function is not
public knowledge, a micro-benchmark was constructed (see section 5.1.9), finding
a hashing function with a 5-bits XOR operation for a Fermi GPU.

113

Chapter 5. Towards a programmable GPU architecture

5.1.6 Miss-status holding-registers

A GPU can have only a finite number of memory requests pending: pending
requests are stored in miss-status holding registers (MSHRs), per-core registers
that keep track of in-flight (in progress) memory requests. The reuse distance
theory is extended to model such registers to improve the accuracy of the cache
model. MSHRs are organised in such a way that each entry can service a unique
cache-line request: requests to the same cache-line are merged into a single en-
try (up to a certain limit). A limited amount of registers limits the number of
outstanding memory requests: either all MSHR entries are occupied when a new
cache-line is requested, or an MSHR entry corresponding to a specific cache-line
is full. In either case, the active warp will be stalled because it cannot perform
any more memory requests. While waiting for an entry to become free, the GPU
will process other warps that do not require MSHRs.

We model the limited amount of MSHR entries, but assume that requests to
the same cache-line are merged into a single entry. Our model keeps track of the
number of unique outstanding memory requests. Before a warp modifies the reuse
stack, it is ensured that it is either a hit or that the number of outstanding requests
is not exceeding the number of MSHRs. If the warp cannot continue, it is put
on-hold and issued again at a later time. This is illustrated in table 5.5, in which
the same example as in table 5.4 is shown, but now with the assumption that
there is only a single MSHR available. Only threads 0 and 2 are shown to make
the example illustrative and concise. From table 5.5, we see that instruction 0 of
thread 2 is cancelled and re-issued at a later time. Also, we see that instruction 1
of thread 2 (issued at time 4) does not have to be postponed: it uses the already
occupied MSHR for cache-line 1.

time 0 1 2 3 4 5 6

instruction 0 0 1 0 1 - -
thread ID 0 2 0 2 2 - -

address 0 4 1 4 5 - -
cache-line 0 1 0 1 1 - -
cache effect - - 0 0 - - 1 1

distance ∞ ∞ 0 ∞ ∞ - -

MSHRs used 0 1 0 0 1 - -
status miss cancel hit miss miss - -
MSHRs used 1 - 0 1 1 - -

latency 2 - 0 2 2 - -
effect at 2 - 2 5 6 - -

Table 5.5: Example of reuse distance theory with MSHR modelling, assuming a single MSHR
available. Only threads 0 and 2 of the example are considered for illustration purposes.

Similar to the case of the hash function of the cache, it is not publicly known
how many MSHRs a GPU core has. The GPU simulator GPGPU-Sim [27] uses
a default of 32 MSHRs per core for a Fermi GPU, but does not claim that this

114

5.1. A detailed GPU cache model

value is realistic. Through micro-benchmarking (see section 5.1.9), we find that a
Fermi GPU core has 64 MSHRs and a single warp can use only up to 6 MSHRs.

The relevance of modelling MSHRs in our cache model is demonstrated with a
simple experiment for the GPU’s 16KB (128 lines) cache. The experiment consists
of a kernel that performs a copy of a 2D matrix in a column-major fashion: each
thread copies an entire row. Cache-line locality is not among threads (accesses are
uncoalesced) but within each thread. Figure 5.4 illustrates the experiment and
shows the results, varying the height of the 2D matrix (the number of threads:
one threadblock only). A constant width of 1024 is set and a data-size of 4 bytes
is used. The results show that the measured cache miss rates do not correspond
to the miss rates when assuming an ordered round-robin schedule. We conclude
from the table that, because of the limited number of MSHRs, certain threads run
ahead of others. This can yield to performance improvements (256–1024 threads)
or losses (64–128) compared to a fair round-robin schedule. In other words: for a
GPU cache model to be accurate, MSHRs need to be modelled.

width (1024)

n
u

m
b

e
r

o
f

th
re

a
d

s

line locality

threads measured misses expected (round-robin)

32 3.13% 3.13% = 1

32

64 3.77% 3.13%
128 32.71% 3.13%
256 42.05% 100.00%
512 67.20% 100.00%
1024 82.28% 100.00%

Figure 5.4: Toy experiment demonstrating the relevance of MSHR modelling (left) and the
results for a 2D matrix with a height of 32–1024 and a width of 1024 (right).

For example, when running 128 threads in round-robin, each cache-line can
store a single cache-block (for a cache of 128 cache-lines). However, when warps
diverge, threads can run ahead and request new cache-blocks while other threads
are still using their previous cache-block. Due to a non-oracle replacement policy,
this can result in additional misses. On the other hand, when running 256 threads
in round-robin, threads 128–255 overwrite the cache-blocks required by threads 0–
127. In this case, divergence can only ameliorate cache behaviour: when threads
run faster than others, they can benefit from their intra-thread cache-line locality.

5.1.7 Warp divergence

As a final extension to the reuse distance theory, a warp divergence model is intro-
duced. Warp divergence is defined as the process that causes program counters of
warps to differ from each other as execution progresses. This is not to be confused
with the non-cache related concept of thread divergence, which describes diver-
gence within warps caused by branch instructions taken by a subset of threads in a
warp. Instead, we discuss warp divergence: divergence among warps as a result of

115

Chapter 5. Towards a programmable GPU architecture

aspects such as on-chip local memory bank conflicts, non-uniform memory access
latencies, (instruction) cache misses, and per-warp branches in program code.

Because the model does not cover the entire GPU and only uses memory
reference traces, not all possible sources of warp divergence are modelled. Instead,
the focus lies on the memory-related sources: 1) data-cache hit and miss latencies,
2) non-uniform off-chip memory latencies, and 3) the limited size of the MSHR
table. The first two sources are introduced in section 5.1.4 and the third in
section 5.1.6. This section models how these sources affect the execution order.

To model warp divergence, the concept of a warp queue is introduced. Initially,
the queue is filled with all active warps (from one or more threadblocks) ordered
by warp identifier (thread identifier divided by the warp size). As long as the
queue is non-empty, a warp is selected based on a first-in first-out (FIFO) policy
and a single memory request is processed for each thread in the reuse distance
model. After a warp finishes a memory request, it is not directly pushed to the
back of the warp queue. Instead, it is delayed proportionally to the corresponding
memory request’s latency. Furthermore, if a warp does not succeed because all
MSHRs are in use, it is immediately sent to the back of the warp queue.

5.1.8 Implementation of the model

This section gives an overview of the model’s implementation and infrastructure.
The components as shown in figure 5.5 are discussed: A the Ocelot tracer, B the
allocation of warps and blocks to cores, C a memory coalescing model, D the
reuse distance theory plus extensions, and E verification with hardware counters.

GPU cache model

memory
coalescing

extended reuse
distance theory

warp and block
scheduling

Ocelot tracer
A

B

C
D

CUDA kernel

cache miss rate
comparison

performance
counters

E

Figure 5.5: The infrastructure of the cache model, including a tracer and hardware verification.

The Ocelot GPU emulator [50] is used to produce (unordered) memory access
traces for CUDA kernels. A custom tracer (A) is implemented on top of Ocelot,
creating a trace containing for each access: 1) the thread ID, 2) whether it is a
read or a write, 3) the memory address, and 4) the size of the memory access.

116

5.1. A detailed GPU cache model

Because Ocelot does not simulate the GPU, the ‘traces’ are actually unordered
lists of memory accesses rather than ordered traces that can be obtained from
simulators. The only ordering in the traces is with respect to the instruction
stream within an individual thread.

Before the reuse distance theory can be applied, the memory accesses have
to be ordered. Therefore, we first perform the allocation of threads to warps,
warps to threadblocks, and threadblocks to cores (B). We follow the GPU’s
execution model as discussed in section 5.1.3 and in section 4.1 of the CUDA
programming guide [107]. This thread to warp allocation can be modified when
running the cache model for architecture exploration purposes, e.g. to imple-
ment a warp scheduler performing thread block compaction [62] or two-level warp
scheduling [105]5.

Next, a memory coalescing model (C) is implemented according to the be-
haviour as defined in section G.4.2 of the CUDA programming guide [107]. Co-
alescing is modelled before applying the reuse distance theory, as this can give
a significant reduction in computational and memory complexity of the cache
model: coalescing can compact the memory trace significantly.

All extensions to the reuse distance theory are implemented on top of the
original theory (D). This allows reuse of the already available efficient imple-
mentations for sequential processors [20]. A näıve implementation of a reuse
distance stack has a computational complexity of O(NM), in which N is the
trace length (the total number of memory accesses) and M the number of unique
accesses. To handle the GPU’s large number of threads and accesses, a more
computationally efficient version is used: a binary-tree C++ implementation of
Bennett and Kruskal’s algorithm [20]. This implementation has a computational
complexity of O(N log(N)), is independent of M , and gives a better scaling for
traces where M is proportional to N . When modelling associativity, we increase
the complexity by creating a binary-tree for each set in the cache. However, be-
cause the number of accesses per set is pre-computed, the size of each tree is
reduced accordingly, achieving an overall comparable complexity. Further opti-
misations could be made to reduce the memory footprint (currently around 2GB
for benchmarks from section 5.1.10), for example using a splay tree [20, 51].

To reduce the overall complexity and computational requirements, the number
of threads can be limited in two ways: 1) a limited number of cores can be
modelled, generalising results across all cores, and 2) a limited number of threads
can be modelled. These core and thread counts are configurable parameters, set
to a single core with up to 8192 threads for our experiments.

Finally, a verification method based on hardware counters (E) is included in
our infrastructure. NVIDIA’s profiler nvprof is used to output the measured
number of cache-line hits and misses in the L1 data cache. The comparison of
these numbers with the cache model’s result is automated.

5Note that implementing such techniques will require additional information from an external
source, e.g. from the Ocelot emulator.

117

Chapter 5. Towards a programmable GPU architecture

5.1.9 Micro-benchmarks

To complete the models of sections 5.1.5 (associativity) and 5.1.6 (MSHRs), ad-
ditional information was required. This information was obtained through micro-
benchmarking: carefully designing a benchmark to extract details on the GPU
architecture. This section describes the micro-benchmarks and their results.

Associativity micro-benchmark

The first micro-benchmark is designed to find the mapping of addresses to cache
sets, crucial information to model associativity. Our micro-benchmark (shown in
figure 5.6) launches a single block of 128 threads (4 warps), each performing 3
stages. In the first stage, each thread performs 32 coalesced loads designed to
fill the entire 16KB of the L1 cache with subsequent addresses (an assumption at
this point). This access pattern is repeated in the third stage while measuring
the latencies of the individual loads. If we do not perform anything in the second
stage, all loads show a low latency and are thus cache hits. This verifies our
assumption. Now, performing a single load in the second stage will give increased
memory latencies for some of the loads6 in the third stage, as they become cache
misses. By performing a sweep over different loads for the second stage, a mapping
of addresses that belong to the same set is obtained. We find only up to 4 cache
misses each time in the third stage as long as line-aligned accesses are performed:
this is because Fermi’s 16KB L1 cache is 4-way associative [147].

1 g l o b a l void mb1(int ∗ mem, int ∗ time , int sweepval) {
2
3 // Stage 1
4 for (i =0; i <32; i++)
5 temp = mem[t i d + i ∗128] ;
6
7 // Stage 2
8 i f (t i d == 0)
9 temp = mem[sweepval] ;

10
11 // Stage 3
12 for (i =0; i <32; i++) {
13 s t a r t = c lock () ;
14 temp = mem[t i d + i ∗128] ;
15 time [t i d + i ∗128] = c lock () − s t a r t ;
16 }
17 }

Figure 5.6: Micro-benchmark to find the mapping of memory addresses to sets. The code is
heavily simplified, omitting for example synchronisation barriers.

From the obtained mapping, the hashing function used to map addresses to
sets is reverse-engineered. For the 16KB cache with 32 sets, we find that the 5 bits

6The number of misses is dependent on the order of accesses by the 128 threads and the cache
replacement policy.

118

5.1. A detailed GPU cache model

7–11 and the 5 bits 13, 14, 15, 17, 19 of the byte-address are input to an XOR port
to obtain a log2(S16KB) = 5 bits set index, as shown in figure 5.7. The first gap in
the address (the 12th bit) is a consequence of the cache configuration possibilities:
Fermi’s cache can also be configured as a 48KB 6-way associative cache with 64
sets. If the micro-benchmark is repeated, we find that the log2(S48KB) = 6 set
index bits are constructed by taking the 16KB’s 5 bits (after the XOR operation)
and prefixing bit 12.

2345678910111213141517 01

index within line (2^7 bytes)

set index (2^5 sets)

set index (2^6 sets)

19

Figure 5.7: Details of the mapping of the byte-address bits within a cache-line and for the set
index, shown for both 16KB (32 sets) and 48KB (64 sets) L1 caches.

To verify the found hashing function, an experiment with strided accesses is
performed for the 16KB case. We construct a kernel with two identical loops,
each time performing a number of non-overlapping 128-byte coalesced loads. The
kernel is configured with a single warp only. The miss rate is measured at cache-
line granularity using NVIDIA’s profiler nvprof. A sweep is performed over the
number of loop iterations and the stride of the memory accesses. The results are
shown in figure 5.8, showing either a cache miss rate of 100% (misses in both
loops) or 50% (only misses in the first loop). The final row counts the number of
set index bits varied across the loads, derived as the number of 50% miss rates in
the row minus 1 (4 loop iterations always fit in a single set). The figure confirms
our hypothesis, as the number of varied set bits corresponds to the number of
bits included in the hashing function counting from the log2 of the stride. For
example, with a stride of 212 and 128 loads, bits 12–18 are included, of which only
4 bits (13, 14, 15, 17) are used in the computation of the set index.

7
-1

3

8
-1

4

9
-1

5

1
0

-1
6

1
1

-1
7

1
2

-1
8

1
3

-1
9

1
4

-2
0

1
5

-2
1

1
6

-2
2

1
7

-2
3

1
8

-2
4

1
9

-2
5

2
0

-2
6

2
1

-2
7

5 5 5 5 5 4 5 4 3 2 2 1 1 0 0

8

4

16

32

64

128

256

(#times) -1

lo
o

p
 i
te

ra
ti
o

n
s

(#
 l
o

a
d

s
)

50%

cache

misses

100%

cache

misses

bits accessed

(for 128 loads)

log stride 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

19

17

15

14

13117 8 9 10

2

Figure 5.8: Results of the hash function verification experiment, with the number of varied
set index bits given in the final row. In red are the additional set bits used (from right to left).

119

Chapter 5. Towards a programmable GPU architecture

MSHR micro-benchmark

Similar to the case of the hash function for associativity, it is not known how
many MSHRs are available in the GPU. Therefore, we constructed the following
micro-benchmark to find the number of MSHRs per core. Initially, a CUDA kernel
with only a single thread is launched. The kernel, as shown in figure 5.9, performs
a configurable number of non-overlapping loads without dependences, which are
timed in their entirety. The idea is that the GPU will issue multiple loads at a
time, limited by the number of MSHRs. The results are shown in figure 5.10 for
a varying number of warps and a varying number of loads per warp7.

1 g l o b a l void mb2(int ∗ mem, int ∗ time) {
2 i f (t i d % 32 == 0) {
3 s t a r t = c lock () ;
4
5 // Loop of independent loads (unro l l ed)
6 for (i =0; i<NUMLOADS; i++)
7 temp = mem[32∗ (t i d + i ∗NUMWARPS∗32)] ;
8
9 time [t i d /32] = c lock () − s t a r t ;

10 }
11 }

Figure 5.9: Micro-benchmark to find the number of MSHRs (simplified for readability).

1 2 ... 10 11 12 13 ... 16 17

Number of warps

L
a
te

n
c
y
 (

c
y
c
le

s
)

0
5
0
0

1
0
0
0

6 6 6 5 5 4 4 3

1 load
2 loads

3 loads
4 loads

5 loads
6 loads

7 loads
8 loads

Figure 5.10: Selection of micro-benchmark results, showing the latency of 1–8 loads per warp
for a single threadblock with 1–17 warps. The floating numbers above the bars indicate the
number of low latency loads.

When evaluating the results of figure 5.10 for a single warp (leftmost bars),
we see that performing up to 6 loads yields a similar latency. When performing
an additional 7th load, we observe a sudden increase in latency. From this data,
we conclude that there are only 6 MSHRs available in this case: performing a 7th
(or 13th, 19th, etc.) request increases the latency significantly. However, when
evaluating the results of launching multiple warps, we observe that additional

7We iterate over the number of warps and run with a single thread because threads cannot be
timed individually: threads in a warp run in lock-step.

120

5.1. A detailed GPU cache model

accesses can be performed without increasing the latency significantly8. In fact,
this is true for up to 10 warps, allowing a total of 10·6 = 60 simultaneous requests.
The figure shows a decrease to 5 loads per warp for 11 warps, 4 for 13 warps, and
3 for 17 warps. From this, we conclude that there are 64 MSHRs (e.g. 16 warps
with 4 simultaneous requests each). We also conclude that a single warp is only
allowed to use up to 6 entries, although this could be unrelated to MSHRs, e.g.
there could be a limit on the number of outstanding incomplete instructions.

5.1.10 Verification of the model

To demonstrate the usefulness and accuracy of the cache model, the modelled
cache miss rates are compared against miss rates using hardware counters on
a Fermi GPU and against a simulator. The verification is performed for both
the 16KB 32-set 4-way and 48KB 64-set 6-way cache configuration on a GeForce
GTX4709. To ensure a wide variety of kernels, two complete benchmark suites10

are included: PolyBench/GPU [117] and Parboil [128]. The only exclusions made
are the mb sad calc kernel from Parboil’s sad benchmark, because it relies
on the GPU’s texture memory and texture cache, and the histo main ker-
nel from Parboil’s histo benchmark, as it only uses atomic memory accesses.
PolyBench/GPU is configured to use default data-sizes, and Parboil to use the
‘medium’ inputs (or ‘large’ where unavailable). The iteration limit is set to a max-
imum of 2 for Parboil benchmarks with multiple iterations. The two benchmark
suites differ significantly: PolyBench/GPU contains mostly naive implementa-
tions of matrix-multiplication variants (e.g. no on-chip memory usage, limited
parallelism), whereas Parboil contains heavily optimised kernels of all sorts. This
difference also becomes apparent when measuring the impact of disabling the
GPU’s L1 data-cache (the L2 is still enabled): the geometric mean performance
drops by 5% (Parboil) and 15% (PolyBench/GPU).

Comparison against hardware counters

Using the infrastructure described in section 5.1.8, modelled and measured cache
miss rates are collected for the two cache configurations. The results are shown in
figure 5.11 for the 16KB configuration, in which the kernel invocations are mapped
to the x-axis. Bracketed letters are used in case a kernel is invoked multiple times.
For each kernel, we show on the left hand side the modelled L1 data cache miss
rate, and on the right hand side the measured miss rate using the profiler. The
following types of modelled misses are distinguished: 1) compulsory misses, 2)
capacity misses, 3) associativity misses, 4) MSHR misses, and 5) latency misses.
We make the following observations from the results:

8As the number of instructions increases when performing more loads or running more warps,
the measured latency increases a bit as well.
916KB 4-way and 48KB 6-way are the only cache configurations for Fermi GPUs. Newer Kepler
GPUs also support a 32KB configuration [107].

10This also includes cases where ‘caching’ is performed manually using the scratchpad memory.

121

Chapter 5. Towards a programmable GPU architecture

b
fs

c
u
tc

p
 (

a
)

c
u
tc

p
 (

b
)

h
is

to
 p

re
s
c
a
n
 (

a
)

h
is

to
 i
n
te

rm
e
d
ia

te
s
 (

a
)

h
is

to
 f
in

a
l
(a

)

h
is

to
 p

re
s
c
a
n
 (

b
)

h
is

to
 i
n
te

rm
e
d
ia

te
s
 (

b
)

h
is

to
 f
in

a
l
(b

)

lb
m

 S
tr

e
a
m

C
o
lli

d
e
 (

a
)

lb
m

 S
tr

e
a
m

C
o
lli

d
e
 (

b
)

la
rg

e
r_

s
a
d
_
c
a
lc

_
8

la
rg

e
r_

s
a
d
_
c
a
lc

_
1
6

s
g
e
m

m

s
p
m

v
 (

a
)

s
p
m

v
 (

b
)

s
te

n
c
il

(a
)

s
te

n
c
il

(b
)

tp
a
c
f

65

38 37
40

85

58

40

86

57

19 19

84

55

81

60 61

98 98

73

100

37 37
42

58
63

44

58
63

9 10

88

56

96

50 52

98 98

74

C
a
c
h
e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0
0

(latency misses

are not measured

by the profiler)

model (compulsory) model (capacity) model (associativity) model (latency) profiler

m
ri

−
g
 b

in
n
in

g

m
ri

−
g
 s

p
lit

S
o
rt

m
ri

−
g
 s

c
a
n
_
L
1
 (

a
)

m
ri

−
g
 s

c
a
n
_
in

te
r1

 (
a
)

m
ri

−
g
 s

c
a
n
_
in

te
r2

 (
a
)

m
ri

−
g
 u

n
ifo

rm
A

d
d
 (

a
)

m
ri

−
g
 s

p
lit

R
e
a
rr

m
ri

−
g
 r

e
o
rd

e
r

m
ri

−
g
 s

c
a
n
_
L
1
 (

b
)

m
ri

−
g
 s

c
a
n
_
in

te
r1

 (
b
)

m
ri

−
g
 s

c
a
n
_
in

te
r1

 (
c
)

m
ri

−
g
 s

c
a
n
_
in

te
r2

 (
b
)

m
ri

−
g
 s

c
a
n
_
in

te
r2

 (
c
)

m
ri

−
g
 u

n
ifo

rm
A

d
d
 (

b
)

m
ri

−
g
 g

ri
d
d
in

g
 (

c
)

m
ri

−
q
 P

h
iM

a
g

m
ri

−
q
 C

o
m

p
u
te

Q
 (

a
)

m
ri

−
q
 C

o
m

p
u
te

Q
 (

b
)

33

100 100

50 50

92 91

43

100

50

100 100

50

92

22

100 100 100

41

100 100

50 50

98

88

70

100

50

100 100

50

98

22

100 100 100

C
a
c
h
e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0
0

model (compulsory) model (capacity) model (associativity) model (latency) profiler

a
ta

x
 0

a
ta

x
 1

b
ic

g
 0

b
ic

g
 1

c
o
n
vo

lu
ti
o
n
 2

D

c
o
n
vo

lu
ti
o
n
 3

D

c
o
rr

e
la

ti
o
n
 0

c
o
rr

e
la

ti
o
n
 1

c
o
rr

e
la

ti
o
n
 2

c
o
va

ri
a
n
c
e
 0

c
o
va

ri
a
n
c
e
 1

fd
td

 2
D

 0

fd
td

 2
D

 1

fd
td

 2
D

 2

g
e
m

m

g
e
s
u
m

m
v

m
v
t
0

m
v
t
1

s
y
r2

k

s
y
rk

67

50 50

70

12

53 52

26
20

51

35

67

45

59

50

98

68

50

67

51

79

51 51

79

21

52 52

26
22

51 54

70
77

61

51

98

79

51

88

77

C
a
c
h
e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0
0

(latency misses

are not measured

by the profiler)

model (compulsory) model (capacity) model (associativity) model (latency) profiler

Figure 5.11: Verification results for the Parboil (top and middle) and PolyBench/GPU (bot-
tom) benchmark suites, showing the modelled (left) and measured (right) 16KB L1 cache miss
rates for individual kernels. Matching values represent a high accuracy, significantly distinct
values represent a low accuracy. In this comparison, we exclude the latency misses (in grey) in
the cache miss rate number: the profiler does not include these types of misses as they don’t
cause additional memory requests.

122

5.1. A detailed GPU cache model

• We observe that the modelled compulsory misses are lower or equal to the
measured misses for all kernels. This is important because the amount of
compulsory misses is cache parameter independent. Furthermore, we note
that this results in a perfect model for cases where the only type of misses
are compulsory misses, e.g. in many of the mri-g and mri-q kernels.

• Overall, most kernels show almost no associativity misses. However, there
are still cases where associativity misses account for a significant fraction of
the total amount of misses, in particular for PolyBench/GPU.

• These benchmarks show no additional misses caused by the limited number
of MSHRs. In contrary, limiting the size of the MSHR table reduces the
cache miss rate in many cases, as will also be shown in section 5.1.11.

• The kernels that show the largest difference between measured and modelled
misses (e.g. bfs, atax 0, histo intermediates) are very sensitive to
the memory latency parameter. To improve the accuracy for these bench-
marks, the model needs to be extended beyond caches only, allowing more
realistic latency values to be used.

The results of figure 5.11 are summarised in the top half of figure 5.12, aug-
mented with the results for the 48KB configuration (not shown in detail). The
arithmetic mean in absolute error11 for our model is 6.4% for the 16KB config-
uration and 8.3% for the 48KB configuration. Finally, three scenarios are tested
where a single component of the model is disabled each time, showing how much
the introduced extensions to the reuse distance theory contribute to the precision
of the model. The 6.4% arithmetic mean in absolute error changes as follows for
the 16KB cache configuration: 1) a 9.6% error when associativity is not modelled,
2) a 12.1% error when latencies are not modelled, and 3) a 7.1% error when the
number of MSHRs is unlimited.

Comparison against simulation

As a secondary verification, the cache model is compared against the GPGPU-Sim
simulator (version 3.2.0) [27]. The simulator is configured with the specifications
of the GTX470 GPU (both 16KB and 48KB caches) and runs the two benchmark
suites. The results are reported in the bottom half of figure 5.12, in which we show
the absolute difference in cache miss rate compared to the results of the profiler.
The simulator shows on average a larger error compared to our model: it produces
a mean absolute error of 18.1% for the 16KB configuration and 21.4% for the 48KB
configuration. Additionally, the run-time of the simulator is on average a factor
268x higher than our model. For example, GPGPU-Sim completes cutcp in 10
hours, whereas our model completes the same benchmark in 10 seconds (excluding
a one-time 4 minutes emulation in Ocelot).

11Note: the absolute error of a metric measured in percentages (miss rate) is also given in
percentages.

123

Chapter 5. Towards a programmable GPU architecture

0 20 40 60 80 100

0
1

0
2

0
absolute error (%)

fr
e

q
u

e
n

c
y

model (16KB)

0 20 40 60 80 100

0
1

0
2

0

absolute error (%)

fr
e

q
u

e
n

c
y

simulator (16KB)

0 20 40 60 80 100

0
1

0
2

0

absolute error (%)

fr
e

q
u

e
n

c
y

model (48KB)

0 20 40 60 80 100

0
1

0
2

0

absolute error (%)

fr
e

q
u

e
n

c
y

simulator (48KB)

Figure 5.12: Histograms of the absolute error in cache miss rate for the model (top) and for
GPGPU-Sim (bottom).

cutcp

c
a

c
h

e
 m

is
s
 r

a
te

 (
%

)

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

lbm

c
a

c
h

e
 m

is
s
 r

a
te

 (
%

)

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

sgemm

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

spmv

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

stencil

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

tpacf

0

25

50

75

100

1−way 4−way 16−way
4 KB 16 KB 64 KB
32 B 128 B 512 B
16 64 256

associativity
cache−size
cache−line size
number of MSHRs

Figure 5.13: Evaluation of different values for four parameters. Different series within a graph
represent different parameters and use their own x-axis. All other parameters are set to the
defaults, as shown in the middle of each graph.

124

5.1. A detailed GPU cache model

5.1.11 Example use: evaluating cache parameters

To illustrate one of the uses of our cache model, a sweep over cache parameters is
performed. Evaluating all design points or finding optimal design points is beyond
the scope of this work: we merely illustrate the possibilities of the cache model.

Four different values are chosen to evaluate four of the main cache parameters:
1) the associativity, 2) the cache-size, 3) the cache-line size, and 4) the number
of MSHRs. The values evaluated are 0.25x, 0.5x, 2x, and 4x the GPU’s original
value for the 16KB configuration. The first (or only) kernel of six of Parboil’s
benchmarks are included in the results of figure 5.13: cutcp, lbm, sgemm, spmv,
stencil and tpacf. These benchmarks are chosen because of their mix of
different types of misses. We make the following observations:

• Associativity is a parameter of little importance for the evaluated bench-
marks. Small benefits of a high associativity are only visible for stencil
and lbm, benchmarks originally showing 2–3% associativity misses. Be-
cause hits and misses influence the thread order, a lower associativity can
sometimes give a lower miss rate, as is the case for spmv and cutcp.

• The cache-size is the most important parameter for lbm and spmv, showing
significant miss rate reductions.

• Cache-line size can have both a positive and a negative influence on the miss
rate. For our benchmarks, a cache-line size of either 128 or 256 bytes gives
the best results.

• Using only 16 or 32 MSHRs yields better cache behaviour for lbm and spmv:
a low number of MSHRs allows inter-thread locality to be better exploited
(see section 5.1.6). The other benchmarks are not significantly influenced
by the MSHR parameter.

5.1.12 Summary and future work

This work has shown that reuse distance theory can be used to model GPU caches
in detail by extending it with: 1) the mapping and scheduling of the GPU’s
threads, warps, threadblocks, cores and sets of active threads, 2) the notion of
in-flight memory requests and conditional and non-uniform latencies, 3) cache
associativity, 4) the effects of miss-status holding-registers (MSHRs), 5) and warp
scheduling and divergence. Additionally, we showed through micro-benchmarks
how a Fermi GPU maps addresses to sets (for its hash-associative caches) and
how many MSHRs are available per core.

The new cache model has been evaluated against two benchmark suites, com-
paring modelled miss rates for the GPU’s L1 data caches against measured miss
rates using hardware counters. The results distinguish different types of cache
misses. An example are latency misses, a type not even measured by hardware

125

Chapter 5. Towards a programmable GPU architecture

counters. On average, our model predicts cache miss rates with an absolute er-
ror of 6.4% (16KB 4-way) and 8.3% (48KB 6-way). From the 57 tested kernel
invocations, 47 lie within a 10% absolute error margin. Compared to the GPU
simulator GPGPU-Sim, our cache model shows a better accuracy (6–8% versus
18–21%) and a lower run-time (267x on average). The importance of the discussed
extensions becomes clear when evaluating them separately, showing a reduction
in average absolute error when modelling: cache associativity (9.6% → 6.4%),
latencies (12.1%→ 6.4%), and a limited amount of MSHRs (7.1%→ 6.4%).

A more accurate memory latency and warp divergence model can help improve
the cache model further, but would require integration with a full GPU execution
model. Additionally, the model can be extended to include other GPU caches,
such as the L2, the texture caches, or Kepler’s new read-only L1 cache. Future
work includes the verification of the model on AMD and ARM GPUs.

The cache model by itself does not improve the programmability of GPUs.
Still, it can be a valuable tool for programmers. When optimising their code,
they can benefit from insight in the behaviour of their code given by the cache
model’s breakdown of types of misses. The cache model can also be used along-
side compilers (e.g. the bones compiler from section 4) by guiding optimisation
decisions. For example, a cache model can be used to decide whether or not to
perform thread coarsening. Nevertheless, the cache model’s main use in this the-
sis is to investigate how the GPU’s thread scheduler can be modified to improve
cache behaviour.

5.2 A case for locality-aware thread scheduling

Programming models such as CUDA and OpenCL allow the programmer to spec-
ify the independence of threads, removing ordering constraints. Still, parallel
architectures such as the GPU do not exploit the potential of data-locality en-
abled by this independence. Therefore, programmers are currently still required
to manually perform data-locality optimisations such as memory coalescing or
loop tiling.

This section makes a case for locality-aware thread scheduling : re-ordering
threads to increase data-locality. We demonstrate that locality-aware thread
scheduling can considerably benefit a multi-threaded architecture (such as the
GPU) in terms of performance. In particular, we perform an in-depth analysis of
the potential of multi-level (threads, warps, blocks) locality-aware thread schedul-
ing for GPUs, considering among others cache performance, memory coalescing
and bank locality. This section does not aim to improve performance for already
optimised code, but is instead motivated by non-optimised program code and the
performance potential of locality-aware thread scheduling.

This section discusses: 1) the potential of locality-aware thread scheduling
is identified and quantified (section 5.2.3), and 2) an in-depth evaluation of two
example kernels (section 5.2.4).

126

5.2. A case for locality-aware thread scheduling

5.2.1 Related work

Locality-aware thread scheduling has been investigated for non-GPU micropro-
cessors in earlier work. For instance, Philbin et al. [113] formalise the problem of
locality-aware thread scheduling for a single-core processor. In other work [131],
threads are grouped based on data-locality for multi-threaded multi-core proces-
sors, introducing a metric of thread similarity. Corvino et al. [45] express similarity
between threads using a tiled representation of data accesses and find a thread
schedule by solving the travelling salesman problem. OpenMP 4.0 allows local-
ity information annotations to be added by programmers [104]. Furthermore,
Ding and Zhong [51] propose a model to estimate locality based on reuse dis-
tances. These approaches cannot be applied directly to GPUs, as they do not
take into account aspects such as: scalability to many threads, cache sizes, the
thread-warp-block hierarchy, nor the active thread count.

Recent work on GPUs has investigated the potential of scheduling less active
threads to improve cache behaviour. Kayiran et al. [84] propose a compute and
memory-intensity heuristic to select the active thread count. Furthermore, Rogers
et al. [119] propose a hardware approach: the number of active threads is adapted
at run-time based on lost locality counters. However, these works only consider
active thread count reduction: they do not investigate thread scheduling.

Warp scheduling for GPUs is another active research topic. However, this is
mainly in the context of divergent control flow rather than data-locality. By dy-
namically regrouping threads into warps, those following the same execution path
can be scheduled together. Dynamic warp formation in the context of memory
access coalescing is discussed in several works [90, 102]. Recent work has focussed
on two-level warp scheduling, a technique to reduce the impact of long latency
memory operations [67, 82, 105]. This is orthogonal to our work and can be
applied on top of locality-aware thread scheduling.

5.2.2 Experimental setup

The experiments are performed on the simulator GPGPU-Sim (version 3.2.1) [27]
using a GeForce GTX580 configuration (Fermi) with a 16KB L1 cache (128 byte
cache-lines) and a 768KB L2 cache. The GTX580 has 16 SIMT cores (or SMs)
for a total of 512 ‘CUDA cores’. From the simulation results we report IPC (in-
structions per cycle counted as the throughput of all CUDA cores and load/store
units), cache miss rates, and load balancing amongst off-chip memory banks.

Implementation in GPGPU-Sim

GPGPU-Sim was modified to perform thread scheduling experiments. The schedul-
ing mechanism of a GPU (and of the simulator) is non-trivial, including multiple
hierarchies and dynamic aspects (e.g. influenced by memory latencies). There-
fore, the scheduling mechanism in GPGPU-Sim was left intact and instead a pre-
processing ‘mapping’ step was applied to the thread and block identifiers. This

127

Chapter 5. Towards a programmable GPU architecture

mapping step takes thread identifiers ti and block identifiers bi and calculates
new identifiers as t′i = f(ti) and b′i = g(bi). The functions f() and g() implement
alternative thread schedules as will be discussed in section 5.2.3. Because the
mapping is applied before the hardware thread scheduling is applied, the effect is
equivalent to applying the f() and g() to the software thread and block identifiers.

Benchmark selection

This chapter includes results for 6 non-optimised CUDA benchmarks, i.e. sub-
optimal implementations rather than fine-tuned benchmarks (e.g. Parboil or Ro-
dinia). The main reason for this choice is that this work aims to improve the
programmability of the GPU rather than the maximum performance. In other
words, if performance of these naive non-optimised benchmarks can be improved
without having to change the program code, GPU acceleration is made available
to a wider audience. Even expert programmers can benefit from increased flexi-
bility and require fewer optimisations to achieve the full potential of the GPU.

matrix-copy (per row)

thread 0

thread 1

thread 2

matrix-copy (per column)

th
re

a
d
 0

th
re

a
d
 1

th
re

a
d
 2

integral image (col-wise) 11 by 11 convolution

matrix multiplication

integral image (row-wise)

 thread (0,0)

 thread (1,1)

11

11

0 1 2 3
threads

0

1

2

3

th
re

a
d
s

Figure 5.14: Illustrations of the memory access patterns of the 6 benchmarks.

The benchmarks are: the computation of an integral image (both row-major
and column-major), a 2D convolution (11 by 11), a 2D matrix copy (each thread
copies either a row or a column), and a naive matrix-multiplication. Image and
matrix sizes are 512 by 512. Figure 5.14 illustrates their memory access patterns:

1. Integral image (row-wise): Every thread at coordinates (x, y) in a 2D
image produces a single output pixel at (x, y) by consuming all input pixels
(x′, y) for which x′ ≤ x. In the example, thread 0 consumes input 0 (red),
thread 1 consumes inputs 0 and 1 (red and blue), and so on.

2. Integral image (column-wise): Equal to the row-wise version, but each
thread instead consumes all input pixels (x, y′) for which y′ ≤ y.

3. 11 by 11 convolution: Each thread produces a pixel in a 2D image by
consuming a pixel at the same coordinates and its neighbourhood (green).

128

5.2. A case for locality-aware thread scheduling

4. Matrix-multiplication: Each thread with (x, y)-coordinates consumes a
row (∗, y) of an input matrix and a column (x, ∗) of another input matrix
to produce a single element in an output matrix at (x, y).

5. Matrix copy (per row): Each thread consumes a row of an input matrix
to produce the corresponding row in an output matrix.

6. Matrix copy (per column): As before, but now consuming and producing
entire columns instead of rows.

5.2.3 The potential of thread scheduling

Many GPU programs contain a large number of independent threads that can be
freely re-ordered. This re-ordering (changing the thread schedule) is motivated
by the following data-locality performance optimisations: 1) multiple threads
accessing a single cache-line must be grouped in a warp (memory coalescing),
2) threads having strong inter-thread locality must be grouped within a single
threadblock (sharing a L1 cache), 3) threadblocks with data-locality must be
executed either on a single core in temporal vicinity or simultaneously on different
cores (sharing a L2 cache), 4) threads executing simultaneously must minimise
pollution of the shared caches, and 5) threads executing simultaneously must
spread their accesses as evenly as possible across the memory banks.

Consider an SPMD (single-program multiple-data) kernel with n independent
threads t1, t2, ..., tn, each referencing a number of data elements. This work as-
sumes that all n threads are independent12 and can be reordered as r = n! distinct
sequences s1, s2, ..., sr. The problem of locality-aware thread scheduling is to find
a sequence si of n threads such that execution time is minimal. On a GPU,
thread scheduling influences execution time in terms of efficient use of the caches,
memory coalescing, memory bank locality, and careful selection of the number of
active threads.

Candidate thread schedules

Various thread schedules are tested in GPGPU-Sim to quantify the potential of
locality-aware thread scheduling. Because the number of threads n is typically
large (e.g. 218), it is impractical to test all r orderings. Therefore, only a limited
set of schedules is considered: regular and structured schedules, matching the
target regular and structured programs. The selected schedules are illustrated in
figure 5.15 and discussed below. Note that these schedules represent the map-
ping step discussed in section 5.2.2 and are still subject to the GPU’s multi-level
scheduling mechanism. The schedules are:

12Dependences in SPMD programs (e.g. synchronisation barriers within threadblocks) can be
added as constraints on the thread ordering.

129

Chapter 5. Towards a programmable GPU architecture

1. Sequential: The unmodified original ordering, i.e. f(x) = x and g(x) =
x. Note that, although it is a sequential ordering from a pre-processing
perspective, the actual ordering is still subject to the GPU’s thread, warp,
and block scheduling policies.

2. Stride(a, b): An ordering with a configurable stride (a) and granularity (b)
(e.g. warp or threadblock granularity) with respect to the original ordering.
Strided schedules have the potential to e.g. ameliorate bad choices of a
2D-coordinate to thread mapping [127].

3. Zigzag(a, b): An ordering assuming a 2D grid of threads, reversing the
ordering of odd rows. The parameters are the row-length (a) and the gran-
ularity (b). Zigzag can exploit 2D locality, but might degrade coalescing for
small granularities.

4. Tile(a, b, c): 2D tiling in a 2D grid. Tiling takes as parameter the length
of a row (a) and the dimensions of the tile (b x c). Tiling has been shown
to have potential to exploit locality on GPUs [127].

5. Hilbert(a): A space filling fractal for squared grids of size a exploiting 2D
locality [89].

0 4

sequential

1 2 3 4 5 6 7 0

stride (2,2)

1 2 3 6 75

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

zigzag (4,1) tile (4,2,2)

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

Hilbert (4)

0 1 14 15

3 2 13 12

4 7 8 11

5 6 8 10

Figure 5.15: Examples with 8 or 16 threads. The numbering shows the new sequence and the
layout the original sequence (left-to-right, top-to-bottom).

Two different threadblock-schedulers are implemented on top of the candidate
schedules: either schedule threadblocks over cores in a round-robin fashion (left
hand side of figure 5.16) or allocate subsequent threadblocks to subsequent cores
(right hand side of figure 5.16). In case threadblocks with locality are grouped
close to each other, the first threadblock-scheduler can benefit from locality in
the L2 cache (in space among different cores), while the second can benefit from
locality in the L1 cache (in time among different threadblocks).

A total of 2170 candidate schedules is considered. This includes a sweep over
the 5 orderings, several parameter values (e.g. stride-size, granularity), and the
two threadblock-schedulers. Furthermore, five different active thread counts (64,
128, 256, 512 and 1024) are included to identify the trade-offs between cache
contention and parallelism [84, 119].

130

5.2. A case for locality-aware thread scheduling

L2L2A
core 0

B C D
core 1

A

C

Dscheduler 1

A BC D

A

B

C

Dscheduler 2

L1

L1

B

core 0

core 1L1

L1

Figure 5.16: Illustrating scheduling techniques for threadblocks A–D, assuming locality be-
tween blocks A and B (red) and between C and D (purple). This results either in L2 locality
(left) or L1 locality (right).

integral image (row−wise)

IP
C

0

100

200

300

400

500

600

700

schedules (sorted by IPC)
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●

●
●●

●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●
●● ●●

●●●
●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●

●●●●●●●●●●●●●● ● ●●●
●●●●●●●●●●●

●

●●●●●●●
●●●●●

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●
●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

integral image (column−wise)

IP
C

0

100

200

300

400

500

600

700

schedules (sorted by IPC)
●● ●●●

●●●●●●●●
●●●
●●●●

●●●●

●●

●● ●●●
●●●●●
●●●●●●
●●

●●●●

●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●

●●●●●●
●●
●●●●●
●

●●●●
●
●●

●

●●● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●● ●●●●●●●●● ●●●
●●●●
●●●●●
●●●●●
●●●●●●

●●
●●●●
●●

●●●
●●●●
●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ● ● ●●●●●●● ● ● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ● ● ●●●●● ●● ●●●●●●●●
●●●●●●●

●●
●●●

●
●●●●
●

●●●●
●
●●●●●●

●
●●

●●●●
●●●●●●
●●●●●
●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

11 by 11 convolution

IP
C

0

200

400

600

800

schedules (sorted by IPC)
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●● ●●●●●●●●
●●●●

●●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

matrix−multiplication

IP
C

0

100

200

300

400

500

schedules (sorted by IPC)
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●

●●

●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●

●●●
●●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

matrix copy (per−row)

IP
C

0

10

20

30

40

schedules (sorted by IPC)

●●
●●

●●
●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●
●●●● ●●● ●● ●●●●●● ●●●●●●●●● ● ●●●● ● ●●● ●● ●●● ●● ● ● ●● ●●●●●●●● ● ●●● ●● ●●●

●
●●●●●

●●
●●●●●
●●●●●

●●●●●●

●●●●
●●
●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ● ●●●●●●●●●●●●●●●● ●
●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

matrix copy (per−column)

IP
C

0

20

40

60

80

100

120

schedules (sorted by IPC)

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●
●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●● ● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●●
●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●

●●●
●●

●
●●●●

●●●●
●●●●●●●

●●
●●●●●●●●●●●

●●●
●●●

●●●●
●●●●●●●●●●●

●●●●
●●

●●●●●●●●●●●●●●●●
●●●●

●●
●●●●

●●●
●

●●●●●●●●●●●●●●
●●●●●

●●●●●
●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●

original

●

●

●

●

●

●

1024 act. thr.

512 act. thr.

256 act. thr.

128 act. thr.

64 act. thr.

Figure 5.17: Sorted IPC (higher is better) for 2170 schedules per benchmark. The vertical red
arrow identifies the original schedule (no changes applied to GPGPU-Sim). Darker and larger
glyphs represent more active threads, lighter and smaller glyphs represent fewer active threads.

131

Chapter 5. Towards a programmable GPU architecture

Experimental results

Figure 5.17 shows the IPC results when simulating all candidate schedules for the
benchmarks with GPGPU-Sim. Each set of 2170 results is sorted by their achieved
IPC (from low to high). The original (unmodified) schedule is highlighted, its
horizontal position indicating the performance potential. Note that these graphs
merely identify the ‘landscape’, detailed results are presented and discussed in
section 5.2.4. We make the following observations with respect to figure 5.17:

1. Integral image (row-wise): There is a wide performance variation among
the different schedules: IPC ranges from 2 to 700. The default schedule is
already performing well: it has coalesced memory accesses and uses the
caches efficiently. Still, there is opportunity for a 20% performance im-
provement, achieved for example by using a 8 by 16 tiled schedule. The
active thread count is not strongly correlated to performance. Even so, the
best 5% schedules all use 1024 active threads.

2. Integral image (column-wise): The default schedule at an IPC of 7 is
suffering from uncoalesced memory accesses and bad cache locality for this
purposely poorly design kernel. Using a schedule with a stride equal to the
width of the image resolves these problems, bringing performance back to
the level of the row-wise integral image computation.

3. 11 by 11 convolution: The overall results look similar to the row-wise
integral image case at first glance. However, inspection of the results shows
that the best candidates are zigzag as opposed to tiled schedules, achieving
up to 10% improvement over the default.

4. Matrix-multiplication: The results show that there is up to 87% perfor-
mance to gain over the default schedule. Section 5.2.4 will analyse this.

5. Matrix copy (per row): The active thread count is of significant impor-
tance in this naive implementation of matrix copy, although the performance
is in general low. Schedules with 512 or 1024 active threads (including the
default) yield an IPC of 5 at best, while schedules with 64, 128, or 256 active
threads show a potential for an IPC of up to 34. This is the only tested case
where more active threads does not yield better performance.

6. Matrix copy (per column): Better overall performance compared to
per-row copy. Section 5.2.4 analyses the results and the 12% potential.

Note that in contrast to the two integral image cases, it is not possible to achieve
equal performance for the two matrix copy cases. The reason for this is the
integral image’s flexibility: each thread computes a single result. In contrast, the
matrix copy processes (in the current implementation) an entire row or column
per thread, limiting the scheduling freedom.

132

5.2. A case for locality-aware thread scheduling

Additional benchmarks

The same testing methodology was applied to several other naive benchmarks. An
example is the computation of an 8 by 8 discrete cosine transform (DCT) on a
2048 by 2048 input using a nested for-loop in the kernel body with 64 iterations. A
sweep through the different thread schedules led to a schedule with a performance
of 3.2x the original (an increase from an IPC of 175 to 570). This ‘best’ schedule
applies a stride of 512 at a granularity of 8, moving multiple groups of threads
belonging to one 8 by 8 transform (64 threads) together into a single threadblock.

Similarly, the symmetric rank-k kernel (syrk) from PolyBench shows a 3 times
speed-up. Several other tested benchmarks have not shown significant changes
at all. This includes matrix-vector summation (gesummv) from the PolyBench
benchmark and the breath-first-search (bfs) and srad kernels from Rodinia.
These results were expected, as these benchmarks contain already optimised code.

5.2.4 Detailed case studies

Section 5.2.3 illustrated the performance impacts for a subset of all possible thread
schedules for 6 benchmarks. We showed that the performance potential varies
from limited (e.g. 10% for the convolution benchmark) to significant (e.g. 87%
for matrix-multiplication). We also saw different best performing schedules for
different benchmarks and a varying correlation between performance and active
thread count. To get additional insight from the results, this section discusses
two of the benchmarks in more detail. However, because of the large amount of
data (schedules, benchmarks, metrics), only a subset of the data is presented.

Matrix-multiplication

Matrix-multiplication is one of the examples that shows a significant performance
potential (up to 87%) from its default IPC of 245. To identify the reason why
certain schedules perform better than others, we take a detailed look at the sim-
ulation results for the strided schedules. Because the stride ordering has two
parameters (P1 for the stride and P2 for the granularity), the data can be visu-
alised as a 2D heatmap. Figure 5.18 shows the heatmaps for the IPC and the L1
and L2 cache miss rates13, as well as the correlation between the them.

Figure 5.18 shows a high inverse correlation (-0.8) between the IPC and the
L1 miss rate: the 4 best candidates (with IPC > 300) all have the lowest L1
miss rate (16%). Although a low L2 miss rate also contributes to a high IPC,
figure 5.18 (bottom right) shows a lower correlation. The results of figure 5.18
can be explained after detailed investigation. First of all, schedules with a small
granularity (P2 < 32) can reduce the amount of coalescing significantly, leading
to a low IPC and high cache miss rates. Second, schedules with a large stride

13The L2 miss rates are w.r.t the requests made to the L2 (the local miss-rate). Multiplying the
L1 and L2 miss rates yields the miss rate w.r.t the total number of requests.

133

Chapter 5. Towards a programmable GPU architecture

IPC for stride(P1,P2)

P1 (stride)

P
2

 (
g

ra
n
u

la
ri

ty
)

149

149

145

149

145

76

149

146

75

25

261

218

212

59

28

223

231

286

77

30

18

266

231

360

95

73

28

27

265

295

333

95

90

41

37

24

266

295

337

104

93

42

38

25

8

266

294

382

194

122

91

65

30

8

4

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

2

4

8

16

32

64

128

256

512

1024

L1 miss rate (%)

P1 (stride)

P
2

 (
g

ra
n
u

la
ri

ty
)

66

66

49

66

49

52

66

49

53

91

50

33

30

73

78

50

25

22

60

76

75

50

25

16

55

60

79

80

50

25

16

52

60

79

82

59

50

25

16

53

63

78

85

86

81

50

25

16

49

58

65

85

88

89

94

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

2

4

8

16

32

64

128

256

512

1024

L2 miss rate (%)

P1 (stride)

P
2

 (
g

ra
n
u

la
ri

ty
)

6

6

67

6

67

73

6

64

72

54

6

10

68

59

71

6

6

62

52

67

62

6

6

56

39

57

70

61

6

6

63

21

44

60

53

29

6

6

59

25

28

48

39

35

90

6

6

26

17

25

36

31

23

97

78

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

2

4

8

16

32

64

128

256

512

1024

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 100 200 300 400

0
2

0
4

0
6

0
8

0
1

0
0

IPC and miss rate correlation

IPC

M
is

s
 r

a
te

 (
%

)

● L1 cache
L2 cache

Figure 5.18: Simulation results for the matrix-multiplication example for strided schedules.
Shown are IPC (higher is better), L1 and L2 miss rates (lower is better) and their correlation.

and a large granularity form small ‘tiles’ in the 2D space of the matrix, improving
locality. Finding the best tile dimensions is non-trivial and dependent on among
others matrix dimensions and cache configuration. In this case, a ratio of 8:1 for
P1 and P2 yields the best results for L1 and 2:1 for the L2 cache.

The left hand side of figure 5.19 shows the correlation plots of all the 2170
schedules for the matrix-multiplication example for 3 metrics: the top graph
shows the correlation between IPC (y-axis) and L1 miss rate (x-axis), the bottom
between IPC and L2 miss rate. From these results, we observe that the strided
and tiled schedules have similar behaviour: they both cover the entire IPC and
miss rate spectrum and show a high correlation between the IPC and L1 miss
rate. We also observe a large amount of schedules with a L1 cache miss rate of
around 50%, including the default and zigzag schedules.

Per-column matrix copy

The correlation plots for the per-column matrix copy are shown in the right half
of figure 5.19. From the correlation plots, we immediately observe that the IPC
and cache miss rates are not as correlated as for the matrix-multiplication. In

134

5.2. A case for locality-aware thread scheduling

IPC/L1 corr. for matrix−multiplication

L1 miss rate (%)

IP
C

0

100

200

300

400

0 25 50 75 100

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

tiled

zigzag

stride

hilbert

default

L2 miss rate (%)

IP
C

0

100

200

300

400

0 25 50 75 100

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

tiled

zigzag

stride

hilbert

default

IPC/L1 corr. for matrix copy (per−column)

L1 miss rate (%)

IP
C

0

20

40

60

80

100

0 25 50 75 100

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tiled

zigzag

stride

hilbert

default

L2 miss rate (%)

IP
C

0

20

40

60

80

100

0 25 50 75 100

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tiled

zigzag

stride

hilbert

default

Figure 5.19: Correlation plots for IPC (higher is better) and cache miss rates (lower is better)
for the matrix-multiplication example (left) and the per-column matrix copy (right). Different
colours/shapes represent different schedule types.

IPC for stride(P1,P2)

P1 (stride)

P
2

 (
g

ra
n
u

la
ri

ty
)

27

27

14

31

15

8

62

31

16

9

57

32

16

10

3

62

52

33

19

8

4

113

64

53

37

21

5

4

114

100

67

61

32

16

10

6

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2

4

8

16

32

64

128

256

DRAM efficiency (%)

P1 (stride)

P
2

 (
g

ra
n
u

la
ri

ty
)

64

64

64

59

59

57

60

59

58

55

66

60

58

59

32

63

61

58

58

45

25

65

57

60

58

52

24

26

65

58

41

39

31

30

34

35

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2

4

8

16

32

64

128

256

Figure 5.20: Simulation results for the per-column matrix copy using strided schedules. Shown
are the IPC and the DRAM bank efficiency (higher is better).

fact, the best performing schedules have L1 and L2 cache miss rates of 100%. We
furthermore observe that L1 cache miss rates only vary for tiled schedules and
that most of them are distributed in a log2 fashion: they have values of 100%,
50%, 25% and 12.5%. These ‘improved’ miss rates are cases where a lowered (12 ,
1
4 ,

1
8) memory coalescing rate14 results in additional cache hits.
Unlike the matrix-multiplication example, cache miss rates are not correlated

with the IPC. Therefore, figure 5.20 focuses on other aspects: it shows the IPC and

14Coalescing is not visualised in this work because GPGPU-Sim lacks the corresponding counters.

135

Chapter 5. Towards a programmable GPU architecture

DRAM bank efficiency (still for strided schedules). A low DRAM bank efficiency is
the cause of an uneven distribution of accesses over the banks (6 for the simulated
GPU): certain phases of the benchmark access only a subset of banks, limiting
throughput. Although DRAM efficiency is correlated to the IPC, figure 5.20 also
shows that it is not the only contributing effect. As with matrix-multiplication,
coalescing also plays a role, explaining the low IPC for P2 < 32.

5.2.5 Summary and future work

This section identified the potential for locality-aware thread scheduling on GPUs:
re-ordering threads to increase data-locality and subsequently performance and
energy efficiency. A set of 2170 candidate thread schedules were simulated for 6
non-optimised CUDA benchmarks, showing a performance potential varying from
10% to multiple orders of magnitude. The benchmarks were explicitly chosen to
be non-optimised: enabling competitive performance for such benchmarks will
greatly improve the programmability of the GPU. A detailed study of two of these
benchmarks has identified various aspects to consider when performing locality-
aware thread scheduling, including cache miss rates, coalescing, bank locality, and
the number of active threads. An example benchmark is a straightforward imple-
mentation of matrix multiplication, which achieved a 87% performance increase
by modifying the thread schedule.

Although we have shown that locality-aware thread scheduling has potential to
improve the programmability and can considerably improve performance, we have
also shown that it is non-trivial to find the best thread schedule. Future work
will need to investigate how to find such a good (or the best) thread schedule
among all possibilities. A solution could be found by evaluating schedules using
a complete or partial performance model. This is motived by the detailed studies
of section 5.2.4, which have shown that performance is correlated to one or more
metrics such as memory access coalescing or cache miss rate. An example of this
is the use of the L1 cache model presented in section 5.1, which will be able to
find the best schedules in the case of the matrix-multiplication example, but will
fail to do so in the case of the per-column matrix copy. Investigating such an
approach in more detail is left for future work.

136

“Measuring programming progress by lines of code
is like measuring aircraft building progress by weight.”

- Unknown source

Chapter 6

Conclusions and

future work

This section summarises the conclusions of the individual chapters and concludes
the thesis. Furthermore, it suggests directions for future work.

6.1 Conclusions

GPUs have become increasingly popular as accelerators and are here to stay:
with energy efficiency as a main performance metric and dark silicon on the hori-
zon, computer architecture will need to rely on specialised microprocessors in the
future even more than it already does now. Unfortunately, this decreases pro-
grammability: to exploit the GPU’s full potential, programmers are required to
understand the working of the architecture, have to manage parallelism and syn-
chronisation, deal with complex memory hierarchies and so on. For this reason,
industry and academia have started investigating into different techniques to im-
prove programmability and the related metrics of performance, portability and
productivity. This has led amongst others to work on high-level programming lan-
guages, intermediate representations, architectural support for programmability,
iterative compilation and source-to-source compilers.

This work addressed the programmability issues of GPUs with a source-to-
source compiler based on a structured program code classification. Such a pro-
gram code classification can be beneficial for both programmers (manual ap-
proach) and compilers (automatic approach). Because none of the explored ex-

137

Chapter 6. Conclusions and future work

isting classifications provide a good fit for this goal, new memory access pattern-
based classifications were introduced. The first is ‘algorithmic species’, a for-
malised algorithm classification based on the polyhedral model. However, two
main drawbacks of this theory were observed: 1) it is limited to static affine loop
nests, and 2) the classes fail to capture some important aspects for performance
and energy efficiency (e.g. tiled loops). The first drawback is resolved by the
introduction of a new formal theory for the original algorithmic species, and the
second by increasing the amount of detail in classes, yielding the finer-grained
species+ classification. This creates a trade-off, in which algorithmic species can
provide a readable and intuitive classification (suitable for automatic and manual
uses), while species+ is less readable but captures additional details.

bones is a new source-to-source compiler based upon the algorithmic species
classification. The compiler transforms sequential C code into CUDA, OpenCL or
OpenMP by providing a pre-optimised template implementation (an ‘algorithmic
skeleton’) for each algorithmic species. Previous to this work, compilers based on
algorithmic skeletons used ‘classifications’ without formal definitions which were
meant to be extended as new classes were encountered. This is no longer needed
as a result of using the algorithmic species classification within bones. Further-
more, by using tools to automatically extract species from source code, bones is
the first skeleton-based compiler integrated in a fully automatic flow. Although
most of the code generation is performed based on skeletons within bones, the
compiler also includes traditional optimisation passes such as register caching,
thread coarsening, zero-copy, host-accelerator transfer optimisations, and kernel
fusion. Chapter 4.5 showed the importance of these optimisations: a compiler
relying on skeletons alone will not be able to deliver competitive performance.
Because bones is based on the more intuitive algorithmic species and not on the
more detailed species+ classification, there will still be room for optimisations af-
ter compilation. Therefore, bones generates editable and readable code, allowing
further fine-tuning by expert programmers or auto-tuners.

Algorithmic species and bones improve the programmability of GPUs from
a programming language and compiler perspective, however, it can also be im-
proved from an architectural point of view. In particular, this thesis identified the
potential of re-ordering the GPU’s threads in a locality-aware manner: schedul-
ing work such that threads accessing the same data execute close to each other
in time or space. Although a locality-aware thread scheduling technique has not
yet been found, the impact on performance and programmability is shown to be
significant. The first steps to find a solution have been discussed in the form of a
detailed cache model. This GPU cache model, based on reuse distance theory, can
be a tool for programmers and processor architects to obtain insight into cache
behaviour and could potentially be used to find a locality-aware thread schedule.

This thesis has shown that the programmability of GPUs can be improved
from both a compiler and an architectural perspective. In particular, the com-
piler approach has improved portability and productivity (two of the three met-
rics illustrated in figure 1.2) by abstracting away from target specific languages

138

6.2. Future work

such as OpenCL and CUDA. Performance (the third metric) is achieved through
the compiler’s skeletons and optimisations. This work also identified that pro-
grammability can be improved from an architectural perspective, in particular by
intelligent thread scheduling. This can reduce the programmer’s effort to fine-tune
code, improving on portability and productivity while maintaining performance.
Some of the techniques discussed to address the programmability issues can be
addressed from either of the two perspectives, but others are more naturally ad-
dressed by either a compiler (e.g. kernel fusion) or by modifying the architecture
(e.g. zig-zag thread scheduling).

Although this thesis has discussed some techniques specific for GPUs, it has
not lost its generality. The program code classification, the source-to-source com-
piler, and even the proposed locality-aware thread scheduling are not limited to
GPUs only: the techniques can be applied to other (parallel) microprocessors such
as multi-core CPUs. Moreover, the algorithmic species classification can be used
outside the scope of ‘improving programmability’, for example for performance
prediction.

6.2 Future work

This thesis has made a case for locality-aware thread scheduling, identifying the
potential to improve programmability. Future work must investigate how to find
such a locality-aware schedule in order to create the proposed architecture in
which the scheduler optimises for thread locality.

This work also briefly mentioned the ‘boat hull model’ [11], a species-specific
roofline model. This performance prediction technique was based on an earlier
pre-species algorithm classification. Updating the boat hull model with support
for algorithmic species or even species+ can improve the model in various ways,
including automation and a more detailed prediction. Integrating such a model
into the bones source-to-source compiler can help to automate the selection of a
target (e.g. CPU versus GPU) or can be used to estimate how far performance is
from the theoretical achievable maximum.

The compiler bones can furthermore be extended to give feedback to the
user, possibly in combination with a performance model. For example, a user
can be notified when a particular GPU kernel has little parallelism, or the user
can receive a detailed parallelisation report. This enables a user to learn from
the compiler, but it can also result in better code, as the user might implement a
different algorithm that suits the target processor better next time.

The first steps of using bones and algorithmic species for hardware design
have already been made in the form of high-level synthesis skeletons. Related
to this, species could also be used in the future to design an application specific
programmable accelerator. For example, given details about the type of species
occurring in a target domain, a hardware designer can decide whether or not to

139

Chapter 6. Conclusions and future work

include (and how to dimension) a cache for neighbourhood accesses or a read-only
memory for full input patterns.

The idea of algorithmic species can also be extended into a programming
model, creating something along the lines of existing domain specific languages
for GPUs (e.g. [100]). Such a species-based programming model can motivate pro-
grammers to directly think in terms of memory access patterns, but cannot benefit
from the automatic identification of species currently provided by a-darwin.

140

Bibliography

Refereed papers and patent covered in this thesis

[1] C. Nugteren, G.-J. v. d. Braak, and H. Corporaal. Future of GPGPU Micro-
Architectural Parameters. In DATE: Design Automation and Test in Europe,
2013.

[2] C. Nugteren, G.-J. v. d. Braak, H. Corporaal, and H. Bal. A Detailed GPU
Cache Model Based on Reuse Distance Theory. In HPCA-20: International
Symposium on High Performance Computer Architecture. IEEE, 2014.

[3] C. Nugteren and H. Corporaal. Introducing ‘Bones’: A Parallelizing Source-
to-Source Compiler Based on Algorithmic Skeletons. In GPGPU-5: Workshop
on General Purpose Processing on Graphics Processing Units. ACM, 2012.

[4] C. Nugteren, R. Corvino, and H. Corporaal. Algorithmic Species Revisited:
A Program Code Classification Based on Array References. In MuCoCoS-
6: International Workshop on Multi-/Many-core Computing Systems. IEEE,
2013.

[5] C. Nugteren, P. Custers, and H. Corporaal. Algorithmic Species: An Algo-
rithm Classification of Affine Loop Nests for Parallel Programming. ACM
Transactions on Architecture and Code Optimisations, 9(4):Article 40, 2013.

[6] C. Nugteren, P. Custers, and H. Corporaal. Automatic Skeleton-Based Com-
pilation through Integration with an Algorithm Classification. In APPT: In-
ternational Conference on Advanced Parallel Processing Technology. Springer,
2013.

[7] UK Patent Application GB1321841.7. Configuring Thread Scheduling on a
Multi-Threaded Data Processing Apparatus, 2013.

Other first-author refereed papers

[8] C. Nugteren, G.-J. v. d. Braak, and H. Corporaal. Roofline-aware DVFS
for GPUs. In ADAPT-4: International Workshop on Adaptive Self-Tuning
Computing Systems. ACM, 2014.

141

[9] C. Nugteren, G.-J. v. d. Braak, H. Corporaal, and B. Mesman. High Perfor-
mance Predictable Histogramming on GPUs: Exploring and Evaluating Al-
gorithm Trade-offs. In GPGPU-4: Workshop on General Purpose Processing
on Graphics Processing Units. ACM, 2011.

[10] C. Nugteren and H. Corporaal. The Boat Hull Model: Adapting the Roofline
Model to Enable Performance Prediction for Parallel Computing. In PPoPP-
17: Symposium on Principles and Practice of Parallel Programming (2-page
poster article). ACM, 2012.

[11] C. Nugteren and H. Corporaal. The Boat Hull Model: Enabling Performance
Prediction for Parallel Computing Prior to Code Development. In CF-9: In-
ternational Conference on Computing Frontiers. ACM, 2012.

[12] C. Nugteren, H. Corporaal, and B. Mesman. Skeleton-based Automatic Par-
allelization of Image Processing Algorithms for GPUs. In SAMOS-XI: Inter-
national Conference on Embedded Computer Systems. IEEE, 2011.

[13] C. Nugteren, B. Mesman, and H. Corporaal. Analyzing CUDA’s Compiler
through the Visualization of Decoded GPU Binaries. In ODES-8: Workshop
on Optimizations for DSP and Embedded Systems, 2010.

Other (co-)authored papers

[14] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. Inoue, T. Grosser,
G. Kouveli, A. Kravets, A. Lokhmotov, C. Nugteren, F. Waters, and A. F.
Donaldson. PENCIL: Towards a Platform-Neutral Compute Intermediate
Language for DSLs. In WOLFHPC-2: International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Com-
puting, 2012.

[15] G.-J. v. d. Braak, C. Nugteren, B. Mesman, and H. Corporaal. Fast Hough
Transform on GPUs: Exploration of Algorithm Trade-Offs. In ACIVS: Ad-
vanced Concepts for Intelligent Vision Systems. Springer, 2011.

[16] G.-J. v. d. Braak, C. Nugteren, B. Mesman, and H. Corporaal. GPU-Vote:
A Framework for Accelerating Voting Algorithms on GPU. In Euro-Par:
European Conference on Parallel and Distributed Computing, 2012.

[17] C. Nugteren and H. Corporaal. A Modular and Parameterisable Classifica-
tion of Algorithms. Technical Report ESR-2011-02, Eindhoven University of
Technology, 2011.

142

Main bibliography

[18] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow:
High-Level and Efficient Streaming on Multi-Core. Programming Multi-core
and Many-core Computing Systems, 13, Jan. 2013.

[19] R. Allen and K. Kennedy. Automatic Translation of FORTRAN Programs
to Vector Form. ACM Transactions on Programming Languages and Sys-
tems, 9(4):491–542, Oct. 1987.

[20] G. Almási, C. Caşcaval, and D. Padua. Calculating Stack Distances Effi-
ciently. In MSP: Workshop on Memory System Performance. ACM, 2002.

[21] A. v. Amesfoort, A. L. Varbanescu, H. Sips, and R. v. Nieuwpoort. Eval-
uating Multi-Core Platforms for HPC Data-Intensive Kernels. In CF-6:
International Conference on Computing Frontiers. ACM, 2009.

[22] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton,
J. Mcmahon, F.-X. Pasquier, G. Péan, and P. Villalon. Par4All: From
Convex Array Regions to Heterogeneous Computing. In IMPACT-2 : In-
ternational Workshop on Polyhedral Compilation Techniques, 2012.

[23] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.
A View of the Parallel Computing Landscape. Communications of the ACM,
52:56–67, October 2009.

[24] D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-
Performance Computing. ACM Computing Surveys, 26, 1994.

[25] S. Baghdadi, A. Größlinger, and A. Cohen. Putting Automatic Polyhedral
Compilation for GPGPU to Work. In CPC-15: Workshop on Compilers for
Parallel Computers, 2010.

[26] S. Baghsorkhi, M. Delahaye, S. Patel, W. Gropp, and W.-M. Hwu. An
Adaptive Performance Modeling Tool for GPU Architectures. In PPoPP-
15: Symposium on Principles and Practice of Parallel Programming. ACM,
2010.

[27] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing
CUDA Workloads using a Detailed GPU Simulator. In ISPASS: Interna-
tional Symposium on Performance Analysis of Systems and Software. IEEE,
2009.

[28] A. Balevic and B. Kienhuis. KPN2GPU: An Approach for Discovery and
Exploitation of Fine-Grain Data Parallelism in Process Networks. ACM
SIGARCH Computer Architure News, 39(4):66–71, 2011.

143

[29] M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA
Code Generation for Affine Programs. In CC-19: International Conference
on Compiler Construction. Springer, 2010.

[30] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly. Design and
Performance of the OP2 Library for Unstructured Mesh Applications. In
CGWS-1: Workshop on Grids, Clouds and P2P Computing, 2011.

[31] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. GPUVerify:
A Verifier for GPU Kernels. In OOPSLA: International Conference on
Object Oriented Programming Systems Languages and Applications. ACM,
2012.

[32] K. Beyls and E. D’Hollander. Reuse Distance as a Metric for Cache Behav-
ior. In IASTED: Conference on Parallel and Distributed Computing and
Systems, 2001.

[33] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. Loh,
D. McCauley, P. Morrow, D. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb. Die Stacking (3D) Microarchitecture. In
MICRO-39: International Symposium on Microarchitecture. IEEE, 2006.

[34] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Practi-
cal Automatic Polyhedral Parallelizer and Locality Optimizer. In PLDI-29:
Conference on Programming Language Design and Implementation. ACM,
2008.

[35] S. Borkar. Thousand Core Chips: A Technology Perspective. In DAC-44:
Design Automation Conference. ACM, 2007.

[36] P. Boulet. Array-OL Revisited, Multidimensional Intensive Signal Process-
ing Specification. Technical Report RR-6113, INRIA, 2007.

[37] G.-J. v. d. Braak and H. Corporaal. GPU-CC: A Reconfigurable GPU
Architecture with Communicating Cores. In M-SCOPES-16: International
Workshop on Software and Compilers for Embedded Systems. ACM, 2013.

[38] M. Brehob. On the Mathematics of Caching. PhD thesis, Michigan State
University, 2003.

[39] W. Caarls. Automated Design of Application-Specific Smart Camera Archi-
tectures. PhD thesis, Delft University of Technology, 2008.

[40] W. Caarls, P. Jonker, and H. Corporaal. Algorithmic Skeletons for Stream
Programming in Embedded Heterogeneous Parallel Image Processing Ap-
plications. In IPDPS-20: International Parallel and Distributed Processing
Symposium. IEEE, 2006.

144

[41] D. Campbell. Towards the Classification of Algorithmic Skeletons. Techni-
cal Report YCS 276, University of York, 1996.

[42] L. Carrington, M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,
A. Snavely, and S. Poole. An Idiom-finding Tool for Increasing Productivity
of Accelerators. In ICS-25: International Conference on Supercomputing.
ACM, 2011.

[43] X. Chen and T. Aamodt. A First-order Fine-grained Multithreaded
Throughput Model. In HPCA-15: International Symposium on High Per-
formance Computer Architecture. IEEE, 2009.

[44] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. MIT Press, 1991.

[45] R. Corvino, S. Mancini, and R. Guizzetti. Automatic Generation of a Par-
allel Tile Processing Unit for Algorithms with Non-Affine Array References.
In IFMT-1: International Forum on Next-Generation Multicore/Manycore
Technologies. ACM, 2008.

[46] B. Creusillet and F. Irigoin. Exact versus Approximate Array Region Anal-
yses. In LCPC-10: International Workshop on Languages and Compilers
for Parallel Computing. Springer, 1997.

[47] A. Darte. On the Complexity of Loop Fusion. Parallel Computing,
26(9):1175 – 1193, 2000.

[48] U. Dastgeer, L. Li, and C. Kessler. Adaptive Implementation Selection in
the SkePU Skeleton Programming Library. In APPT: International Con-
ference on Advanced Parallel Processing Technology. Springer, 2013.

[49] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc. Design
of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, 1974.

[50] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic Op-
timization Framework for Bulk-Synchronous Applications in Heterogeneous
Systems. In PACT-19: International Conference on Parallel Architectures
and Compilation Techniques. ACM, 2010.

[51] C. Ding and Y. Zhong. Predicting Whole-Program Locality through Reuse
Distance Analysis. In PLDI-24: Conference on Programming Language
Design and Implementation. ACM, 2003.

[52] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid Multi-core Parallel
Programming Environment. In GPGPU-1: Workshop on General Purpose
Processing on Graphics Processing Units, 2007.

145

[53] C. Dubach, T. Jones, E. Bonilla, G. Fursin, and M. O’Boyle. Portable
Compiler Optimisation across Embedded Programs and Microarchitectures
using Machine Learning. In MICRO-42: International Symposium on Mi-
croarchitecture. IEEE, 2009.

[54] A. Duran, E. Ayguade, R. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas. OmpSs: A Proposal For Programming Heterogeneous Multi-Core
Architectures. Parallel Processing Letters, 21(02), 2011.

[55] J. Enmyren and C. Kessler. SkePU: AMulti-backend Skeleton Programming
Library for Multi-GPU Systems. In HLPP-4: International Workshop on
High-level Parallel Programming and Applications. ACM, 2010.

[56] S. Ernsting and H. Kuchen. Data Parallel Skeletons for GPU Clusters and
Multi-GPU Systems. Advances in Parallel Computing, 22:509–518, 2011.

[57] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.
Dark Silicon and the End of Multicore Scaling. In ISCA-38: International
Symposium on Computer Architecture. ACM, 2011.

[58] J. Fang, A. Varbanescu, and H. Sips. A Comprehensive Performance Com-
parison of CUDA and OpenCL. In ICPP-42: International Conference on
Parallel Processing. IEEE, 2011.

[59] P. Feautrier. Dataflow Analysis of Array and Scalar References. Springer
International Journal of Parallel Programming, 20:23–53, 1991.

[60] W.-C. Feng and K. Cameron. The Green500 List: Encouraging Sustainable
Supercomputing. IEEE Computer, 40(12):50–55, 2007.

[61] S. Fuller and L. Millett. Computing Performance: Game Over or Next
Level? IEEE Computer, 44, 2011.

[62] W. Fung and T. Aamodt. Thread Block Compaction for Efficient SIMT
Control Flow. In HPCA-17: International Symposium on High Performance
Computer Architecture. IEEE, 2011.

[63] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic Warp Formation and
Scheduling for Efficient GPU Control Flow. In MICRO-40: International
Symposium on Microarchitecture. IEEE, 2007.

[64] G. Fursin, Y. Kashnikov, A. Memon, Z. Chamski, O. Temam, M. Namolaru,
E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard,
E. Ashton, E. Bonilla, J. Thomson, C. Williams, and M. O’Boyle. Milepost
GCC: Machine Learning Enabled Self-tuning Compiler. Springer Interna-
tional Journal of Parallel Programming, 39(3):296–327, 2011.

146

[65] M. Garland and D. Kirk. Understanding Throughput-Oriented Architec-
tures. Communications of the ACM, 53:58–66, November 2010.

[66] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov. Parallel Computing Experiences with
CUDA. IEEE Micro, 28(4):13–27, 2008.

[67] M. Gebhart, D. Johnson, D. Tarjan, S. Keckler, W. Dally, E. Lindholm,
and K. Skadron. A Hierarchical Thread Scheduler and Register File for
Energy-Efficient Throughput Processors. ACM Transactions on Computer
Systems, 30:8:1–8:38, 2012.

[68] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Tay-
lor. The GreenDroid Mobile Application Processor: An Architecture for
Silicon’s Dark Future. IEEE Micro, 31(2):86–95, 2011.

[69] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically Specialized
Datapaths for Energy Efficient Computing. In HPCA-17: International
Symposium on High Performance Computer Architecture. IEEE, 2011.

[70] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos.
Auto-tuning a High-Level Language Targeted to GPU Codes. In INPAR:
Workshop on Innovative Parallel Computing, 2012.

[71] D. Grewe and A. Lokhmotov. Automatically Generating and Tuning GPU
Code for Sparse Matrix-Vector Multiplication from a High-Level Represen-
tation. In GPGPU-4: Workshop on General Purpose Processing on Graph-
ics Processing Units. ACM, 2011.

[72] S. Guelton, M. Amini, and B. Creusillet. Beyond Do Loops: Data Trans-
fer Generation with Convex Array Regions. In LCPC-25: International
Workshop on Languages and Compilers for Parallel Computing. Springer,
2012.

[73] T. Han and T. Abdelrahman. hiCUDA: High-Level GPGPU Programming.
IEEE Transactions on Parallel and Distributed Systems, 22:78 –90, Jan
2011.

[74] Havli. GPU Hardware Museum. On-line: http://www.hw-museum.cz/.

[75] M. Hill and A. Smith. Evaluating Associativity in CPU Caches. IEEE
Transactions on Computers, 38, 1989.

[76] S. Hong and H. Kim. An Integrated GPU Power and Performance Model.
In ISCA-37: International Symposium on Computer Architecture. ACM,
2010.

147

[77] L. Howes, A. Lokhmotov, A. Donaldson, and P. Kelly. Deriving Effi-
cient Data Movement from Decoupled Access/Execute Specifications. In
HiPEAC-4: International Conference on High Performance Embedded Ar-
chitectures and Compilers. Springer, 2009.

[78] Intel. ARK Processor Database. On-line: http://ark.intel.com/.

[79] Intel. Writing Optimal OpenCL Code with Intel OpenCL SDK, 2013.

[80] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommo-
dating software diversity in chip multiprocessors. In ISCA-34: International
Symposium on Computer Architecture. ACM, 2007.

[81] T. Jablin, J. Jablin, P. Prabhu, F. Liu, and D. August. Dynamically Man-
aged Data for CPU-GPU Architectures. In CGO: International Symposium
on Code Generation and Optimization. ACM, 2012.

[82] A. Jog, O. Kayiran, N. Nachiappan, A. Mishra, M. Kandemir, O. Mutlu,
R. Iyer, and C. Das. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In ASPLOS-18: Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2013.

[83] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A
Hyperplane Based Approach for Optimizing Spatial Locality in Loop Nests.
In ICS-12: International Conference on Supercomputing. ACM, 1998.

[84] O. Kayiran, A. Jog, M. Kandemir, and C. Das. Neither More Nor Less: Op-
timizing Thread-level Parallelism for GPGPUs. In PACT-22: International
Conference on Parallel Architectures and Compilation Techniques. IEEE,
2013.

[85] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and
the Future of Parallel Computing. IEEE Micro, 31:7–17, 2011.

[86] K. Kennedy and K. McKinley. Maximizing Loop Parallelism and Improving
Data Locality via Loop Fusion and Distribution. In LCPC-7: International
Workshop on Languages and Compilers for Parallel Computing. Springer,
1994.

[87] K. Keutzer and T. Mattson. A Design Pattern Language for Engineering
(Parallel) Software. In Intel Technology Journal, 2010.

[88] X. Kong, D. Klappholz, and K. Psarris. The I Test: An Improved Depen-
dence Test for Automatic Parallelization and Vectorization. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):342–349, 1991.

148

[89] I. N. Kontaxakis. Contribution to Image Segmentation and Integral Image
Coding. PhD thesis, University of Athens, 2008.

[90] A. Lashgar, A. Baniasadi, and A. Khonsari. Dynamic Warp Resizing: Anal-
ysis and Benefits in High-Performance SIMT. In ICCD-30: International
Conference on Computer Design. IEEE, 2012.

[91] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming
and Tuning for GPUs. In SC: International Conference on High Perfor-
mance Computing Networking, Storage and Analysis. ACM, 2010.

[92] Y. Lee, R. Krashinsky, V. Grover, S. Keckler, and K. Asanovic. Convergence
and Scalarization for Data-Parallel Architectures. In CGO: International
Symposium on Code Generation and Optimization. IEEE, 2013.

[93] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. Kim, T. Aamodt,
and V. Reddi. GPUWattch: Enabling Energy Optimizations in GPGPUs.
In ISCA-40: International Symposium on Computer Architecture. ACM,
2013.

[94] Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for GPUs.
In ICCS: International Conference on Computational Science. Springer,
2009.

[95] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A Unified Graphics and Computing Architectures. IEEE Micro, 28:39–55,
2008.

[96] A. Magni, C. Dubach, and M. O’Boyle. A Large-Scale Cross-Architecture
Evaluation of Thread-Coarsening. In SC: International Conference on High
Performance Computing Networking, Storage and Analysis, 2013.

[97] B. Massingill, T. Mattson, and B. Sanders. A Pattern Language for Parallel
Application Programming. In PLoP-6: Pattern Languages of Programs
Workshop, 1999.

[98] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Program-
ming. Addison-Wesley, 2004.

[99] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins.
Architecture exploration for a reconfigurable architecture template. IEEE
Design Test of Computers, 22(2):90–101, 2005.

[100] R. Membarth, F. Hannig, J. Teich, M. Körner, and W. Eckert. Generat-
ing Device-specific GPU Code for Local Operators in Medical Imaging. In
IPDPS-26: International Parallel and Distributed Processing Symposium.
IEEE, 2012.

149

[101] R. Membarth, A. Lokhmotov, and J. Teich. Generating GPU Code from a
High-level Representation for Image Processing Kernels. In HPPC: Work-
shop on Highly Parallel Processing on a Chip. Springer, 2011.

[102] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp Subdivision for In-
tegrated Branch and Memory Divergence Tolerance. In ISCA-37: Interna-
tional Symposium on Computer Architecture. ACM, 2010.

[103] G. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8), April 1965.

[104] A. Muddukrishna, P. Jonsson, V. Vlassov, and M. Brorsson. Locality-Aware
Task Scheduling and Data Distribution on NUMA Systems. In IWOMP-9:
International Workshop on OpenMP. Springer, 2013.

[105] V. Narasiman, M. Shebanow, C. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. Patt. Improving GPU Performance via Large Warps and Two-level Warp
Scheduling. In MICRO-44: International Symposium on Microarchitecture.
ACM, 2011.

[106] G. Noaje, C. Jaillet, and M. Krajecki. Source-to- Source Code Translator:
OpenMP C to CUDA. In HPCC-13: International Conference on High
Performance Computing and Communications. IEEE, 2011.

[107] NVIDIA. CUDA C Programming Guide 5.5, 2013.

[108] A. Parakh, M. Balakrishnan, and K. Paul. Performance Estimation of GPUs
with Cache. In IPDPSW-26: International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum. IEEE, 2012.

[109] E. Park, L.-N. Pouchet, J. Cavazos, A. Cohen, and P. Sadayappan. Predic-
tive Modeling in a Polyhedral Optimization Space. In CGO: International
Symposium on Code Generation and Optimization. IEEE, 2011.

[110] D. Patterson. The Top 10 Innovations in the New Fermi Architecture, and
the Top 3 Next Challenges. NVIDIA Whitepaper, 2009.

[111] D. Patterson. The Trouble with Multi-Core. IEEE Spectrum, 47(7):28–32,
53, 2010.

[112] S. Pennycook, S. Hammond, S. Wright, J. Herdman, I. Miller, and S. Jarvis.
An Investigation of the Performance Portability of OpenCL. Elsevier Jour-
nal of Parallel and Distributed Computing, 2012.

[113] J. Philbin, J. Edler, O. Anshus, C. Douglas, and K. Li. Thread Scheduling
for Cache Locality. In ASPLOS-7: International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ACM,
1996.

150

[114] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The Tao of Parallelism in Algorithms. In
PLDI-32: Conference on Programming Language Design and Implemen-
tation. ACM, 2011.

[115] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative Optimiza-
tion in the Polyhedral Model: Part I, One-Dimensional Time. In CGO: In-
ternational Symposium on Code Generation and Optimization. IEEE, 2007.

[116] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and
P. Sadayappan. Combined Iterative and Model-driven Optimization in an
Automatic Parallelization Framework. In SC: International Conference on
High Performance Computing Networking, Storage and Analysis. IEEE,
2010.

[117] L.-N. Pouchet and S. Grauer-Gray. PolyBench: The Poly-
hedral Benchmark Suite. On-line: http://www.cse.ohio-
state.edu/∼pouchet/software/polybench/.

[118] W. Pugh. The Omega Test: A Fast and Practical Integer Programming Al-
gorithm for Dependence Analysis. In SC: International Conference on High
Performance Computing Networking, Storage and Analysis. ACM, 1991.

[119] T. Rogers, M. O’Connor, and T. Aamodt. Cache-Conscious Wavefront
Scheduling. In MICRO-45: International Symposium on Microarchitecture.
IEEE, 2012.

[120] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Modeling
Performance Variation due to Cache Sharing. In HPCA-19: International
Symposium on High Performance Computer Architecture. IEEE, 2013.

[121] S. Sato and H. Iwasaki. A Skeletal Parallel Framework with Fusion Op-
timizer for GPGPU Programming. In APLAS-7: Asian Symposium on
Programming Languages and Systems. Springer, 2009.

[122] D. Schuff, B. Parsons, and V. Pai. Multicore-Aware Reuse Distance Analy-
sis. In IPDPSW-24: International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum. IEEE, 2010.

[123] D. She, Y. He, L. Waeijen, and H. Corporaal. OpenCL Code Genera-
tion for Low Energy Wide SIMD Architectures with Explicit Datapath. In
SAMOS-XIII: International Conference on Embedded Computer Systems.
IEEE, 2013.

[124] J. Shen, J. Fang, H. Sips, and A. Varbanescu. Performance Gaps between
OpenMP and OpenCL for Multi-core CPUs. In ICPPW: International Con-
ference on Parallel Processing Workshops. IEEE, 2012.

151

[125] K. Skadron. The Rodinia Benchmark Suite. On-line:
http://lava.cs.virginia.edu/Rodinia/.

[126] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable Skeleton Li-
brary for High-Level GPU Programming. In IPDPSW-25: International
Symposium on Parallel and Distributed Processing Workshops and PhD Fo-
rum. IEEE, 2011.

[127] J. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung, N. Obeid, L. Chang,
G. Liu, and W. Hwu. Optimization and Architecture Effects on GPU Com-
puting Workload Performance. In INPAR: Workshop on Innovative Parallel
Computing. IEEE, 2012.

[128] J. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. Liu, and W.-M. Hwu. Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing. Technical Report IMPACT-12-
01, University of Illinois, 2012.

[129] A. Stromme, R. Carlson, and T. Newhall. Chestnut: A GPU Programming
Language for Non-Experts. In PMAM: Programming Models and Applica-
tions for Multicores and Manycores. ACM, 2012.

[130] H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software. Dr. Dobb’s Journal, 30(3), March 2005.

[131] D. Tam, R. Azimi, and M. Stumm. Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors. In EuroSys-2: European
Conference on Computer Systems. ACM, 2007.

[132] T. Tang, X. Yang, and Y. Lin. Cache Miss Analysis for GPU Programs
Based on Stack Distance Profile. In ICDCS-31: International Conference
on Distributed Computing Systems. IEEE, 2011.

[133] M. Taylor. Is Dark Silicon Useful?: Harnessing the Four Horsemen of the
Coming Dark Silicon Apocalypse. In DAC-49: Design Automation Confer-
ence. ACM, 2012.

[134] TechPowerUp. GPU Database. On-line:
http://www.techpowerup.com/gpudb/.

[135] S.-Z. Ueng, M. Lathara, S. Baghsorkhi, and W.-M. Hwu. CUDA-Lite: Re-
ducing GPU Programming Complexity. In LCPC-21: International Work-
shop on Languages and Compilers for Parallel Computing. Springer, 2008.

[136] D. Unat, X. Cai, and S. Baden. Mint: Realizing CUDA Performance in 3D
Stencil Methods with Annotated C. In ICS-25: International Conference
on Supercomputing. ACM, 2011.

152

[137] S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model.
In ICMS-3: International Conference on Mathematical Software. Springer,
2010.

[138] S. Verdoolaege. Polyhedral Process Networks. Handbook of Signal Process-
ing Systems, pages 931–965, 2010.

[139] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
and F. Catthoor. Polyhedral Parallel Code Generation for CUDA. ACM
Transactions on Architecture and Code Optimisations, 9(4):Article 54, Jan.
2013.

[140] S. Verdoolaege and T. Grosser. Polyhedral Extraction Tool. In IMPACT-2:
International Workshop on Polyhedral Compilation Techniques, 2012.

[141] S. Wienke, P. Springer, C. Terboven, and D. Mey. OpenACC - First Expe-
riences with Real-World Applications. In Euro-Par: European Conference
on Parallel and Distributed Computing. Springer, 2012.

[142] A. Wijs and D. Bosnacki. Improving GPU Sparse Matrix-Vector Multipli-
cation for Probabilistic Model Checking. In SPIN-19: Workshop on Model
Checking Software. Springer, 2012.

[143] Wikipedia. List of Intel Microprocessors. On-line:
http://wikipedia.org/wiki/List of Intel microprocessors/.

[144] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Communications of the
ACM, 52:65–76, Apr 2009.

[145] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In PLDI-12:
Conference on Programming Language Design and Implementation. ACM,
1991.

[146] M. Wolfe. Implementing the PGI Accelerator Model. In GPGPU-3: Work-
shop on General Purpose Processing on Graphics Processing Units. ACM,
2010.

[147] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. De-
mystifying GPU Microarchitecture through Microbenchmarking. In IS-
PASS: International Symposium on Performance Analysis of Systems and
Software. IEEE, 2010.

[148] W. Wulf and S. McKee. Hitting the Memory Wall: Implications of the
Obvious. SIGARCH Computer Arch. News, 23(1):20–24, 1995.

153

[149] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu. Optimizing Sparse
Matrix Vector Multiplication Using Cache Blocking Method on Fermi GPU.
In SNPD-13: International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel Distributed Computing. IEEE, 2012.

154

Summary

Improving the Programmability of GPU Architectures

Throughout the past decades, the tremendous growth of single-core perfor-
mance has been the key-enabler for digital technology to become ubiquitous in our
society. Recently, diminishing returns on Dennard scaling resulted in power dis-
sipation issues, leading to reduced performance growth. Performance growth has
since been re-enabled by multi-core processors as well as by exploiting the energy
efficiency of specialised accelerators such as graphics processing units (GPUs).
This has led to a heterogeneous and parallel computing environment, making
programming a challenging task. Programmers are faced with a variety of new
languages and are required to deal with the architecture’s parallelism and mem-
ory hierarchy. This has become increasingly important, especially considering the
memory wall and the prospect of dark silicon. Apart from programming, issues
such as code maintainability and portability have become of major importance.

To address these issues, this thesis first introduces algorithmic species : a clas-
sification of program code based on memory access patterns. Algorithmic species
is a structured classification that programmers and compilers can use for example
to take parallelisation decisions or to perform memory access optimisations. The
algorithmic species classification is used in a skeleton-based compiler to automat-
ically generate efficient and readable code for GPUs and other parallel proces-
sors. To do so, C code is first automatically annotated with species information.
The annotated code is subsequently fed into bones, a source-to-source compiler
that provides pre-optimised code templates (‘skeletons’) for specific algorithmic
species. By applying traditional and species-based optimisations such as thread
coarsening and kernel fusion on top of this, bones is able to generate competi-
tive code. Combining skeletons with a program code classification (the species)
creates a unique code generation approach, integrating a skeleton-based compiler
into an automated compilation flow for the first time.

Furthermore, this thesis proposes to change the GPU’s thread scheduling
mechanism to improve its programmability. Programming models for GPUs al-
low programmers to specify the independence of threads, removing ordering con-
straints. Still, GPUs do not exploit the potential for locality (e.g. improving
cache performance) enabled by this independence: threads are scheduled in a
fixed order. This thesis quantifies the potential of scheduling in a ‘locality-aware’
manner. A detailed reuse-distance based cache model for GPUs is introduced to
provide better insight into locality and cache behaviour.

155

156

Acknowledgements

First of all, I thank my advisor and first promotor Henk Corporaal. His supervi-
sion style encouraged independent work, greatly stimulating creativity. Although
his feedback on my written work (including this thesis) was often last-minute, it
was well worth the wait: his comments were always constructive and useful. I
am thankful to have been able to work under his supervision. I also thank Bart
Mesman for being my daily supervisor in the first year. I very much appreciated
his weekly brainstorm sessions, the so-called ‘architecture meetings’. I also thank
Henri Bal, my second promotor. Even though he was only involved in the last
year, the end result benefited considerably from his feedback and advice.

Second, I thank Paul Kelly, Albert Cohen, Ana-Lucia Varbanescu, Gerard de
Haan and Johan Lukkien for taking place in the doctorate committee. I also
thank them for their guidance and valuable feedback.

I thank all others that directly contributed to this thesis. In particular, I
thank Gert-Jan for being co-author on many articles, for our numerous scientific
discussions, and for guiding me through (GPU) programming problems. I also
thank him for all his practical help, including our ‘road-trips’ to buy new GPUs
from the local computer stores. My thanks also go to the reviews and discussions
of co-authors Rosilde and Shakith. The hard work and valuable contributions of
the master-students Pieter and Colin was also highly appreciated.

I also thank the people at ARM for their discussions, support and friendship.
First and foremost I thank Anton Lokhmotov, who has introduced me to ARM
and shepherded me afterwards, and Elena Stöhr, my manager. I thank my friends
and office-mates Alexey, Georgia, Joey, Murat, and everyone else on the Mali
OpenCL compiler team. In particular I thank my friend and colleague Alberto,
with whom I had many fruitful discussions, some of which even led to scientific
publications.

My stay at ARM was sponsored by HiPEAC, a network encouraging collabo-
ration among researchers. I met many fellow students through this network and
by visiting international conferences. Our discussions (and social events) have

157

contributed indirectly to this thesis. Thanks go to José, Ananya, Carlo, Foivos,
Andrew, Nuno, and Aleksandar, just to name a few. I also thank Dominik,
Christophe, Chris, and all the other sociable members of Edinburgh’s Informatics
Forum.

I also thank the members of the PARsE team at the TU/e for their construc-
tive feedback during any one of my many presentations. Thanks go to Zhenyu,
Maurice, Dongrui, Yifan, Luc, Erkan and all the others. Your feedback and re-
marks have contributed to this result.

Many thanks to everyone at the Electronic Systems group at the TU/e. Thanks
go to my office-mates Davit, Manil, Firew, Roel, Luc, Wei, Chris, and Shiqi, who
were always very helpful and kind. Many thanks go as well to Raymond, Marcel,
Sven, Yang, Marc, Sander, Martijn and everyone else at the coffee table for the
daily (non-)scientific discussions. My thanks also go to Benny for being every-
thing a teaching assistant can wish for. I also value the work, support, and care
of the group leaders Ralph Otten and Twan Basten, the project manager Jan,
and the secretaries Marja and Rian.

I also thank my family and friends for being supportive. At age 6, my parents
learned me how to program in Logo () on an Atari ST. I thank Mark and
Michiel for making me a GPU (or 3D-accelerator) enthousiast as early as 1998. I
also thank my father and sister for being exemplars of how to become a doctor.
Finally, I thank my girlfriend Simone for her love, advice, cooking and support.

158

About the author

Cedric was born in the Netherlands, but grew up in Lusaka
(Zambia) where he went to l’École Française. At age of 7, he
moved back to his country of birth and attended primary and
secondary school in Dordrecht. He came to Eindhoven as a
student at the age of 18, where he successfully completed a
bachelor in Electrical Engineering (in 3 years) and a master
in Embedded Systems (in 2 years) at Eindhoven University
of Technology (TU/e). He spent half a year of his master
program abroad in Valencia, Spain. In November 2009, he signed a 1-year contract
at the TU/e, which was later succeeded by a 3-year PhD contract. Cedric spent
four months of his time as a PhD-student at ARM in Cambridge (UK), where he
conducted research as part of ARM’s Mali OpenCL compiler team.

His research interests include GPUs, (parallel) programming, code generation,
high-performance computing, multi/many-core processor architecture, and perfor-
mance modelling. Apart from his research, Cedric is interested in entrepreneur-
ship and web-design: examples are his own company Kinento and the website of
the PARsE research team.

Cedric’s PhD at the TU/e has led to a journal article and several publications
in international conferences and workshops (see page 141). After finishing writing
this thesis, he worked for 4 months as an intern at NVIDIA in Santa Clara,
California.

159

